Loading…

Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles

We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelen...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-09, Vol.5 (1), p.14463, Article 14463
Main Authors: Yoo, SeokJae, Park, Q-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep14463