Loading…

Adipocyte iron regulates leptin and food intake

Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2015-09, Vol.125 (9), p.3681-3691
Main Authors: Gao, Yan, Li, Zhonggang, Gabrielsen, J Scott, Simcox, Judith A, Lee, Soh-hyun, Jones, Deborah, Cooksey, Bob, Stoddard, Gregory, Cefalu, William T, McClain, Donald A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23
cites cdi_FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23
container_end_page 3691
container_issue 9
container_start_page 3681
container_title The Journal of clinical investigation
container_volume 125
creator Gao, Yan
Li, Zhonggang
Gabrielsen, J Scott
Simcox, Judith A
Lee, Soh-hyun
Jones, Deborah
Cooksey, Bob
Stoddard, Gregory
Cefalu, William T
McClain, Donald A
description Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.
doi_str_mv 10.1172/JCI81860
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4588289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428173909</galeid><sourcerecordid>A428173909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23</originalsourceid><addsrcrecordid>eNqN0ltrFDEUAOAgFrtWwV8gA4LYh2lzm0zmRVgWtSuFghVfQzY5M5s6m6yTjNh_bxa3l5F9KCEEki8nyclB6A3BZ4TU9PzrYimJFPgZmpGqkqWkTD5HM4wpKZuayWP0MsYbjAnnFX-BjqlgmEiCZ-h8bt02mNsEhRuCLwboxl4niEUP2-R8ob0t2hBs4XzSP-EVOmp1H-H1fjxB158_fV9clJdXX5aL-WVpBKtTybBlwFZYaGGgMWYlucjHU2Y4AVKDFSBsVfGaaVszDgy32JoKJK0pUHaCPv6Luh1XG7AGfBp0r7aD2-jhVgXt1HTFu7Xqwm_FKympbHKAD_sAQ_g1Qkxq46KBvtcewhhVThrNXRD5BIob1khMWabv_qM3YRx8zkNWhAhSM8YfVKd7UM63IV_R7IKqOacyowbvblgeUB14yO8JHlqXpyf-7IDPzcLGmYMbTicbsknwJ3V6jFEtr7893V79mNr3j-wadJ_WMfRjcsHHKdwn1gwhxgHa-_8jWO3KVt2VbaZvH__3PbyrU_YXz_Dg5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711617334</pqid></control><display><type>article</type><title>Adipocyte iron regulates leptin and food intake</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gao, Yan ; Li, Zhonggang ; Gabrielsen, J Scott ; Simcox, Judith A ; Lee, Soh-hyun ; Jones, Deborah ; Cooksey, Bob ; Stoddard, Gregory ; Cefalu, William T ; McClain, Donald A</creator><creatorcontrib>Gao, Yan ; Li, Zhonggang ; Gabrielsen, J Scott ; Simcox, Judith A ; Lee, Soh-hyun ; Jones, Deborah ; Cooksey, Bob ; Stoddard, Gregory ; Cefalu, William T ; McClain, Donald A</creatorcontrib><description>Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI81860</identifier><identifier>PMID: 26301810</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>3T3-L1 Cells ; Adipocytes - metabolism ; Anemia ; Animals ; Biomedical research ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Dietary Supplements ; Eating - drug effects ; Eating - genetics ; Fat cells ; Ferritins - metabolism ; Gene Expression Regulation - drug effects ; Genetic aspects ; Hemochromatosis - genetics ; Hemochromatosis - metabolism ; Hemochromatosis - mortality ; Hemochromatosis - physiopathology ; Iron ; Iron - metabolism ; Iron - pharmacology ; Iron deficiency diseases ; Leptin ; Leptin - metabolism ; Mice ; Mice, Mutant Strains ; Physiological aspects ; Response Elements ; Rodents ; Studies</subject><ispartof>The Journal of clinical investigation, 2015-09, Vol.125 (9), p.3681-3691</ispartof><rights>COPYRIGHT 2015 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Sep 2015</rights><rights>Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23</citedby><cites>FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588289/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588289/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26301810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Li, Zhonggang</creatorcontrib><creatorcontrib>Gabrielsen, J Scott</creatorcontrib><creatorcontrib>Simcox, Judith A</creatorcontrib><creatorcontrib>Lee, Soh-hyun</creatorcontrib><creatorcontrib>Jones, Deborah</creatorcontrib><creatorcontrib>Cooksey, Bob</creatorcontrib><creatorcontrib>Stoddard, Gregory</creatorcontrib><creatorcontrib>Cefalu, William T</creatorcontrib><creatorcontrib>McClain, Donald A</creatorcontrib><title>Adipocyte iron regulates leptin and food intake</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.</description><subject>3T3-L1 Cells</subject><subject>Adipocytes - metabolism</subject><subject>Anemia</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Dietary Supplements</subject><subject>Eating - drug effects</subject><subject>Eating - genetics</subject><subject>Fat cells</subject><subject>Ferritins - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genetic aspects</subject><subject>Hemochromatosis - genetics</subject><subject>Hemochromatosis - metabolism</subject><subject>Hemochromatosis - mortality</subject><subject>Hemochromatosis - physiopathology</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron - pharmacology</subject><subject>Iron deficiency diseases</subject><subject>Leptin</subject><subject>Leptin - metabolism</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Physiological aspects</subject><subject>Response Elements</subject><subject>Rodents</subject><subject>Studies</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0ltrFDEUAOAgFrtWwV8gA4LYh2lzm0zmRVgWtSuFghVfQzY5M5s6m6yTjNh_bxa3l5F9KCEEki8nyclB6A3BZ4TU9PzrYimJFPgZmpGqkqWkTD5HM4wpKZuayWP0MsYbjAnnFX-BjqlgmEiCZ-h8bt02mNsEhRuCLwboxl4niEUP2-R8ob0t2hBs4XzSP-EVOmp1H-H1fjxB158_fV9clJdXX5aL-WVpBKtTybBlwFZYaGGgMWYlucjHU2Y4AVKDFSBsVfGaaVszDgy32JoKJK0pUHaCPv6Luh1XG7AGfBp0r7aD2-jhVgXt1HTFu7Xqwm_FKympbHKAD_sAQ_g1Qkxq46KBvtcewhhVThrNXRD5BIob1khMWabv_qM3YRx8zkNWhAhSM8YfVKd7UM63IV_R7IKqOacyowbvblgeUB14yO8JHlqXpyf-7IDPzcLGmYMbTicbsknwJ3V6jFEtr7893V79mNr3j-wadJ_WMfRjcsHHKdwn1gwhxgHa-_8jWO3KVt2VbaZvH__3PbyrU_YXz_Dg5g</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Gao, Yan</creator><creator>Li, Zhonggang</creator><creator>Gabrielsen, J Scott</creator><creator>Simcox, Judith A</creator><creator>Lee, Soh-hyun</creator><creator>Jones, Deborah</creator><creator>Cooksey, Bob</creator><creator>Stoddard, Gregory</creator><creator>Cefalu, William T</creator><creator>McClain, Donald A</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Adipocyte iron regulates leptin and food intake</title><author>Gao, Yan ; Li, Zhonggang ; Gabrielsen, J Scott ; Simcox, Judith A ; Lee, Soh-hyun ; Jones, Deborah ; Cooksey, Bob ; Stoddard, Gregory ; Cefalu, William T ; McClain, Donald A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3T3-L1 Cells</topic><topic>Adipocytes - metabolism</topic><topic>Anemia</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Dietary Supplements</topic><topic>Eating - drug effects</topic><topic>Eating - genetics</topic><topic>Fat cells</topic><topic>Ferritins - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genetic aspects</topic><topic>Hemochromatosis - genetics</topic><topic>Hemochromatosis - metabolism</topic><topic>Hemochromatosis - mortality</topic><topic>Hemochromatosis - physiopathology</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron - pharmacology</topic><topic>Iron deficiency diseases</topic><topic>Leptin</topic><topic>Leptin - metabolism</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Physiological aspects</topic><topic>Response Elements</topic><topic>Rodents</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Li, Zhonggang</creatorcontrib><creatorcontrib>Gabrielsen, J Scott</creatorcontrib><creatorcontrib>Simcox, Judith A</creatorcontrib><creatorcontrib>Lee, Soh-hyun</creatorcontrib><creatorcontrib>Jones, Deborah</creatorcontrib><creatorcontrib>Cooksey, Bob</creatorcontrib><creatorcontrib>Stoddard, Gregory</creatorcontrib><creatorcontrib>Cefalu, William T</creatorcontrib><creatorcontrib>McClain, Donald A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Li, Zhonggang</au><au>Gabrielsen, J Scott</au><au>Simcox, Judith A</au><au>Lee, Soh-hyun</au><au>Jones, Deborah</au><au>Cooksey, Bob</au><au>Stoddard, Gregory</au><au>Cefalu, William T</au><au>McClain, Donald A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipocyte iron regulates leptin and food intake</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>125</volume><issue>9</issue><spage>3681</spage><epage>3691</epage><pages>3681-3691</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>26301810</pmid><doi>10.1172/JCI81860</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2015-09, Vol.125 (9), p.3681-3691
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4588289
source EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3T3-L1 Cells
Adipocytes - metabolism
Anemia
Animals
Biomedical research
Cyclic AMP Response Element-Binding Protein - genetics
Cyclic AMP Response Element-Binding Protein - metabolism
Dietary Supplements
Eating - drug effects
Eating - genetics
Fat cells
Ferritins - metabolism
Gene Expression Regulation - drug effects
Genetic aspects
Hemochromatosis - genetics
Hemochromatosis - metabolism
Hemochromatosis - mortality
Hemochromatosis - physiopathology
Iron
Iron - metabolism
Iron - pharmacology
Iron deficiency diseases
Leptin
Leptin - metabolism
Mice
Mice, Mutant Strains
Physiological aspects
Response Elements
Rodents
Studies
title Adipocyte iron regulates leptin and food intake
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipocyte%20iron%20regulates%20leptin%20and%20food%20intake&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Gao,%20Yan&rft.date=2015-09-01&rft.volume=125&rft.issue=9&rft.spage=3681&rft.epage=3691&rft.pages=3681-3691&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI81860&rft_dat=%3Cgale_pubme%3EA428173909%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c637t-30d3e3b06a6ce9ccb84600123c41e17ed6e6d55473ad734e30f0dc5e8272e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711617334&rft_id=info:pmid/26301810&rft_galeid=A428173909&rfr_iscdi=true