Loading…

Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power

Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dep...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2015-12, Vol.10 (1), p.391-391, Article 391
Main Authors: Iacovita, Cristian, Stiufiuc, Rares, Radu, Teodora, Florea, Adrian, Stiufiuc, Gabriela, Dutu, Alina, Mican, Sever, Tetean, Romulus, Lucaciu, Constantin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383
cites cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383
container_end_page 391
container_issue 1
container_start_page 391
container_title Nanoscale research letters
container_volume 10
creator Iacovita, Cristian
Stiufiuc, Rares
Radu, Teodora
Florea, Adrian
Stiufiuc, Gabriela
Dutu, Alina
Mican, Sever
Tetean, Romulus
Lucaciu, Constantin M.
description Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T B ) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T B , the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.
doi_str_mv 10.1186/s11671-015-1091-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4596149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808083129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</originalsourceid><addsrcrecordid>eNqNkd9rFDEQxxdR7A_9A3yRgC--rGbyc_dFkEPbQrUFFXyLu8nsXcpeck32bPe_N8fVUgVBBiYD85lvMvlW1QugbwAa9TYDKA01BVkDbUvxqDoEKVXNtPr-uNQth1pLzQ-qo5yvKBWaavW0OmBKCEW1OKx-XMZxxmk1jxiQnIyzjWP9CZ3vJnTkyxymFWafSRzIYtt7S85SDOTi1jskn7sQN12avB0xkxs_rcipX5aE3eTDklzGG0zPqidDN2Z8fnceV98-fvi6OK3PL07OFu_Payspn2qhUFFJByf6lvXWDgql41xqZ5WAdgDnlJayd33Ta8447wUfdgEoHOMNP67e7XU3236NzmKYUjeaTfLrLs0mdt782Ql-ZZbxpxGyVSDaIvD6TiDF6y3myax9tjiOXcC4zQYaWoID-w9UM9YyoRpW0Fd_oVdxm0L5iUJB2wquJC8U7CmbYs4Jh_t3AzU7q83ealOsNjurDS0zLx8ufD_x29sCsD2QSyssMT24-p-qvwChvrSh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719943653</pqid></control><display><type>article</type><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</creator><creatorcontrib>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</creatorcontrib><description>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T B ) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T B , the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-015-1091-0</identifier><identifier>PMID: 26446074</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Materials Science ; Crystal structure ; Heating ; Iron oxides ; Magnetic fields ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Precursors ; Solvents ; X-ray photoelectron spectroscopy</subject><ispartof>Nanoscale research letters, 2015-12, Vol.10 (1), p.391-391, Article 391</ispartof><rights>Iacovita et al. 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</citedby><cites>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1719943653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1719943653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26446074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iacovita, Cristian</creatorcontrib><creatorcontrib>Stiufiuc, Rares</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Florea, Adrian</creatorcontrib><creatorcontrib>Stiufiuc, Gabriela</creatorcontrib><creatorcontrib>Dutu, Alina</creatorcontrib><creatorcontrib>Mican, Sever</creatorcontrib><creatorcontrib>Tetean, Romulus</creatorcontrib><creatorcontrib>Lucaciu, Constantin M.</creatorcontrib><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T B ) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T B , the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</description><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Heating</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Precursors</subject><subject>Solvents</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkd9rFDEQxxdR7A_9A3yRgC--rGbyc_dFkEPbQrUFFXyLu8nsXcpeck32bPe_N8fVUgVBBiYD85lvMvlW1QugbwAa9TYDKA01BVkDbUvxqDoEKVXNtPr-uNQth1pLzQ-qo5yvKBWaavW0OmBKCEW1OKx-XMZxxmk1jxiQnIyzjWP9CZ3vJnTkyxymFWafSRzIYtt7S85SDOTi1jskn7sQN12avB0xkxs_rcipX5aE3eTDklzGG0zPqidDN2Z8fnceV98-fvi6OK3PL07OFu_Payspn2qhUFFJByf6lvXWDgql41xqZ5WAdgDnlJayd33Ta8447wUfdgEoHOMNP67e7XU3236NzmKYUjeaTfLrLs0mdt782Ql-ZZbxpxGyVSDaIvD6TiDF6y3myax9tjiOXcC4zQYaWoID-w9UM9YyoRpW0Fd_oVdxm0L5iUJB2wquJC8U7CmbYs4Jh_t3AzU7q83ealOsNjurDS0zLx8ufD_x29sCsD2QSyssMT24-p-qvwChvrSh</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Iacovita, Cristian</creator><creator>Stiufiuc, Rares</creator><creator>Radu, Teodora</creator><creator>Florea, Adrian</creator><creator>Stiufiuc, Gabriela</creator><creator>Dutu, Alina</creator><creator>Mican, Sever</creator><creator>Tetean, Romulus</creator><creator>Lucaciu, Constantin M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><author>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Heating</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Precursors</topic><topic>Solvents</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacovita, Cristian</creatorcontrib><creatorcontrib>Stiufiuc, Rares</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Florea, Adrian</creatorcontrib><creatorcontrib>Stiufiuc, Gabriela</creatorcontrib><creatorcontrib>Dutu, Alina</creatorcontrib><creatorcontrib>Mican, Sever</creatorcontrib><creatorcontrib>Tetean, Romulus</creatorcontrib><creatorcontrib>Lucaciu, Constantin M.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacovita, Cristian</au><au>Stiufiuc, Rares</au><au>Radu, Teodora</au><au>Florea, Adrian</au><au>Stiufiuc, Gabriela</au><au>Dutu, Alina</au><au>Mican, Sever</au><au>Tetean, Romulus</au><au>Lucaciu, Constantin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>391</spage><epage>391</epage><pages>391-391</pages><artnum>391</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T B ) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T B , the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26446074</pmid><doi>10.1186/s11671-015-1091-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2015-12, Vol.10 (1), p.391-391, Article 391
issn 1931-7573
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4596149
source PubMed (Medline); Publicly Available Content (ProQuest); IngentaConnect Journals
subjects Chemistry and Materials Science
Crystal structure
Heating
Iron oxides
Magnetic fields
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoparticles
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Precursors
Solvents
X-ray photoelectron spectroscopy
title Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyethylene%20Glycol-Mediated%20Synthesis%20of%20Cubic%20Iron%20Oxide%20Nanoparticles%20with%20High%20Heating%20Power&rft.jtitle=Nanoscale%20research%20letters&rft.au=Iacovita,%20Cristian&rft.date=2015-12-01&rft.volume=10&rft.issue=1&rft.spage=391&rft.epage=391&rft.pages=391-391&rft.artnum=391&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-015-1091-0&rft_dat=%3Cproquest_pubme%3E1808083129%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1719943653&rft_id=info:pmid/26446074&rfr_iscdi=true