Loading…
Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power
Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dep...
Saved in:
Published in: | Nanoscale research letters 2015-12, Vol.10 (1), p.391-391, Article 391 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383 |
container_end_page | 391 |
container_issue | 1 |
container_start_page | 391 |
container_title | Nanoscale research letters |
container_volume | 10 |
creator | Iacovita, Cristian Stiufiuc, Rares Radu, Teodora Florea, Adrian Stiufiuc, Gabriela Dutu, Alina Mican, Sever Tetean, Romulus Lucaciu, Constantin M. |
description | Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T
B
) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T
B
, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs. |
doi_str_mv | 10.1186/s11671-015-1091-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4596149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808083129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</originalsourceid><addsrcrecordid>eNqNkd9rFDEQxxdR7A_9A3yRgC--rGbyc_dFkEPbQrUFFXyLu8nsXcpeck32bPe_N8fVUgVBBiYD85lvMvlW1QugbwAa9TYDKA01BVkDbUvxqDoEKVXNtPr-uNQth1pLzQ-qo5yvKBWaavW0OmBKCEW1OKx-XMZxxmk1jxiQnIyzjWP9CZ3vJnTkyxymFWafSRzIYtt7S85SDOTi1jskn7sQN12avB0xkxs_rcipX5aE3eTDklzGG0zPqidDN2Z8fnceV98-fvi6OK3PL07OFu_Payspn2qhUFFJByf6lvXWDgql41xqZ5WAdgDnlJayd33Ta8447wUfdgEoHOMNP67e7XU3236NzmKYUjeaTfLrLs0mdt782Ql-ZZbxpxGyVSDaIvD6TiDF6y3myax9tjiOXcC4zQYaWoID-w9UM9YyoRpW0Fd_oVdxm0L5iUJB2wquJC8U7CmbYs4Jh_t3AzU7q83ealOsNjurDS0zLx8ufD_x29sCsD2QSyssMT24-p-qvwChvrSh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719943653</pqid></control><display><type>article</type><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</creator><creatorcontrib>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</creatorcontrib><description>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T
B
) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T
B
, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-015-1091-0</identifier><identifier>PMID: 26446074</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Materials Science ; Crystal structure ; Heating ; Iron oxides ; Magnetic fields ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Precursors ; Solvents ; X-ray photoelectron spectroscopy</subject><ispartof>Nanoscale research letters, 2015-12, Vol.10 (1), p.391-391, Article 391</ispartof><rights>Iacovita et al. 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</citedby><cites>FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1719943653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1719943653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26446074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iacovita, Cristian</creatorcontrib><creatorcontrib>Stiufiuc, Rares</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Florea, Adrian</creatorcontrib><creatorcontrib>Stiufiuc, Gabriela</creatorcontrib><creatorcontrib>Dutu, Alina</creatorcontrib><creatorcontrib>Mican, Sever</creatorcontrib><creatorcontrib>Tetean, Romulus</creatorcontrib><creatorcontrib>Lucaciu, Constantin M.</creatorcontrib><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T
B
) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T
B
, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</description><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Heating</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Precursors</subject><subject>Solvents</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkd9rFDEQxxdR7A_9A3yRgC--rGbyc_dFkEPbQrUFFXyLu8nsXcpeck32bPe_N8fVUgVBBiYD85lvMvlW1QugbwAa9TYDKA01BVkDbUvxqDoEKVXNtPr-uNQth1pLzQ-qo5yvKBWaavW0OmBKCEW1OKx-XMZxxmk1jxiQnIyzjWP9CZ3vJnTkyxymFWafSRzIYtt7S85SDOTi1jskn7sQN12avB0xkxs_rcipX5aE3eTDklzGG0zPqidDN2Z8fnceV98-fvi6OK3PL07OFu_Payspn2qhUFFJByf6lvXWDgql41xqZ5WAdgDnlJayd33Ta8447wUfdgEoHOMNP67e7XU3236NzmKYUjeaTfLrLs0mdt782Ql-ZZbxpxGyVSDaIvD6TiDF6y3myax9tjiOXcC4zQYaWoID-w9UM9YyoRpW0Fd_oVdxm0L5iUJB2wquJC8U7CmbYs4Jh_t3AzU7q83ealOsNjurDS0zLx8ufD_x29sCsD2QSyssMT24-p-qvwChvrSh</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Iacovita, Cristian</creator><creator>Stiufiuc, Rares</creator><creator>Radu, Teodora</creator><creator>Florea, Adrian</creator><creator>Stiufiuc, Gabriela</creator><creator>Dutu, Alina</creator><creator>Mican, Sever</creator><creator>Tetean, Romulus</creator><creator>Lucaciu, Constantin M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</title><author>Iacovita, Cristian ; Stiufiuc, Rares ; Radu, Teodora ; Florea, Adrian ; Stiufiuc, Gabriela ; Dutu, Alina ; Mican, Sever ; Tetean, Romulus ; Lucaciu, Constantin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Heating</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Precursors</topic><topic>Solvents</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacovita, Cristian</creatorcontrib><creatorcontrib>Stiufiuc, Rares</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Florea, Adrian</creatorcontrib><creatorcontrib>Stiufiuc, Gabriela</creatorcontrib><creatorcontrib>Dutu, Alina</creatorcontrib><creatorcontrib>Mican, Sever</creatorcontrib><creatorcontrib>Tetean, Romulus</creatorcontrib><creatorcontrib>Lucaciu, Constantin M.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacovita, Cristian</au><au>Stiufiuc, Rares</au><au>Radu, Teodora</au><au>Florea, Adrian</au><au>Stiufiuc, Gabriela</au><au>Dutu, Alina</au><au>Mican, Sever</au><au>Tetean, Romulus</au><au>Lucaciu, Constantin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>391</spage><epage>391</epage><pages>391-391</pages><artnum>391</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (T
B
) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the T
B
, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26446074</pmid><doi>10.1186/s11671-015-1091-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2015-12, Vol.10 (1), p.391-391, Article 391 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4596149 |
source | PubMed (Medline); Publicly Available Content (ProQuest); IngentaConnect Journals |
subjects | Chemistry and Materials Science Crystal structure Heating Iron oxides Magnetic fields Materials Science Molecular Medicine Nano Express Nanochemistry Nanoparticles Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Precursors Solvents X-ray photoelectron spectroscopy |
title | Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyethylene%20Glycol-Mediated%20Synthesis%20of%20Cubic%20Iron%20Oxide%20Nanoparticles%20with%20High%20Heating%20Power&rft.jtitle=Nanoscale%20research%20letters&rft.au=Iacovita,%20Cristian&rft.date=2015-12-01&rft.volume=10&rft.issue=1&rft.spage=391&rft.epage=391&rft.pages=391-391&rft.artnum=391&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-015-1091-0&rft_dat=%3Cproquest_pubme%3E1808083129%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-46e6050fd4b92bccf6e5d3357dc6419f1dd6755bdb8b73233b43f3f3f1e4d2383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1719943653&rft_id=info:pmid/26446074&rfr_iscdi=true |