Loading…
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segme...
Saved in:
Published in: | Scientific reports 2015-10, Vol.5 (1), p.14938-14938, Article 14938 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83 |
container_end_page | 14938 |
container_issue | 1 |
container_start_page | 14938 |
container_title | Scientific reports |
container_volume | 5 |
creator | Chin Neoh, Siew Srisukkham, Worawut Zhang, Li Todryk, Stephen Greystoke, Brigit Peng Lim, Chee Alamgir Hossain, Mohammed Aslam, Nauman |
description | This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. |
doi_str_mv | 10.1038/srep14938 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899773282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKurCPyABNyqM5tVHNoJvB0Zc6FZCmqQ12iY1aQX_vZHRYdRsbuB-nHvPPQDsYnSMES1PYjA9ZpyWK2CTIJZNCCVkdem_AXZifEHpZYQzzNfBBslZhvI82wRPZw5O3WDa1jbGDfDSKButd_Bh7HsfBvjwEQfTwdoHODPjqzSdlfDSysb5aCMco3UNvLMq-Kh8bxU8b73XcNrJxsRtsFbLNpqd77oFHq-vHi9uJ7P7m-nF2WyiGC2HiZKKZowoXWCUUyop0YQxzZVEiBdZxeuqqhUpuOam0pQpWeU4Oai1kUaXdAuczmX7seqMVslIkK3og-1k-BBeWvG74-yzaPy7YBkvC0aTwMG3QPBvo4mD6GxU6SjSGT9GgQuCaY5wxhK6_wd98WNwyZ3AJedFQUlJEnU4p77ukhKqF8tgJL5iE4vYEru3vP2C_AkpAUdzIKaWa0xYGvlP7RPud6Mf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899773282</pqid></control><display><type>article</type><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><source>PubMed (Medline)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</creator><creatorcontrib>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</creatorcontrib><description>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep14938</identifier><identifier>PMID: 26450665</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/1564 ; 631/114/2164 ; Acute lymphoblastic leukemia ; Algorithms ; Blood ; Cell Nucleus - metabolism ; Classification ; Cluster Analysis ; Clustering ; Cytoplasm ; Cytoplasm - metabolism ; Databases, Factual ; Decision support systems ; Diagnosis, Computer-Assisted - methods ; Discriminant Analysis ; Humanities and Social Sciences ; Humans ; Image processing ; Leukemia ; Leukemia - blood ; Leukemia - diagnosis ; Leukocytes - classification ; Leukocytes - metabolism ; Leukocytes - pathology ; Lymphoblasts ; Lymphocytes ; Microscopy - methods ; multidisciplinary ; Nuclei ; Reproducibility of Results ; Science ; Segmentation ; Sensitivity and Specificity ; Staining and Labeling - methods ; Support Vector Machine</subject><ispartof>Scientific reports, 2015-10, Vol.5 (1), p.14938-14938, Article 14938</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</citedby><cites>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899773282/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899773282?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin Neoh, Siew</creatorcontrib><creatorcontrib>Srisukkham, Worawut</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Todryk, Stephen</creatorcontrib><creatorcontrib>Greystoke, Brigit</creatorcontrib><creatorcontrib>Peng Lim, Chee</creatorcontrib><creatorcontrib>Alamgir Hossain, Mohammed</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</description><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>631/114/2164</subject><subject>Acute lymphoblastic leukemia</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Cell Nucleus - metabolism</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Databases, Factual</subject><subject>Decision support systems</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Discriminant Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Leukemia</subject><subject>Leukemia - blood</subject><subject>Leukemia - diagnosis</subject><subject>Leukocytes - classification</subject><subject>Leukocytes - metabolism</subject><subject>Leukocytes - pathology</subject><subject>Lymphoblasts</subject><subject>Lymphocytes</subject><subject>Microscopy - methods</subject><subject>multidisciplinary</subject><subject>Nuclei</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Staining and Labeling - methods</subject><subject>Support Vector Machine</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkUtLxDAUhYMoKurCPyABNyqM5tVHNoJvB0Zc6FZCmqQ12iY1aQX_vZHRYdRsbuB-nHvPPQDsYnSMES1PYjA9ZpyWK2CTIJZNCCVkdem_AXZifEHpZYQzzNfBBslZhvI82wRPZw5O3WDa1jbGDfDSKButd_Bh7HsfBvjwEQfTwdoHODPjqzSdlfDSysb5aCMco3UNvLMq-Kh8bxU8b73XcNrJxsRtsFbLNpqd77oFHq-vHi9uJ7P7m-nF2WyiGC2HiZKKZowoXWCUUyop0YQxzZVEiBdZxeuqqhUpuOam0pQpWeU4Oai1kUaXdAuczmX7seqMVslIkK3og-1k-BBeWvG74-yzaPy7YBkvC0aTwMG3QPBvo4mD6GxU6SjSGT9GgQuCaY5wxhK6_wd98WNwyZ3AJedFQUlJEnU4p77ukhKqF8tgJL5iE4vYEru3vP2C_AkpAUdzIKaWa0xYGvlP7RPud6Mf</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Chin Neoh, Siew</creator><creator>Srisukkham, Worawut</creator><creator>Zhang, Li</creator><creator>Todryk, Stephen</creator><creator>Greystoke, Brigit</creator><creator>Peng Lim, Chee</creator><creator>Alamgir Hossain, Mohammed</creator><creator>Aslam, Nauman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151009</creationdate><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><author>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>631/114/2164</topic><topic>Acute lymphoblastic leukemia</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Cell Nucleus - metabolism</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Databases, Factual</topic><topic>Decision support systems</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Discriminant Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Leukemia</topic><topic>Leukemia - blood</topic><topic>Leukemia - diagnosis</topic><topic>Leukocytes - classification</topic><topic>Leukocytes - metabolism</topic><topic>Leukocytes - pathology</topic><topic>Lymphoblasts</topic><topic>Lymphocytes</topic><topic>Microscopy - methods</topic><topic>multidisciplinary</topic><topic>Nuclei</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Staining and Labeling - methods</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin Neoh, Siew</creatorcontrib><creatorcontrib>Srisukkham, Worawut</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Todryk, Stephen</creatorcontrib><creatorcontrib>Greystoke, Brigit</creatorcontrib><creatorcontrib>Peng Lim, Chee</creatorcontrib><creatorcontrib>Alamgir Hossain, Mohammed</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin Neoh, Siew</au><au>Srisukkham, Worawut</au><au>Zhang, Li</au><au>Todryk, Stephen</au><au>Greystoke, Brigit</au><au>Peng Lim, Chee</au><au>Alamgir Hossain, Mohammed</au><au>Aslam, Nauman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>14938</spage><epage>14938</epage><pages>14938-14938</pages><artnum>14938</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26450665</pmid><doi>10.1038/srep14938</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-10, Vol.5 (1), p.14938-14938, Article 14938 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598743 |
source | PubMed (Medline); Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/114/1564 631/114/2164 Acute lymphoblastic leukemia Algorithms Blood Cell Nucleus - metabolism Classification Cluster Analysis Clustering Cytoplasm Cytoplasm - metabolism Databases, Factual Decision support systems Diagnosis, Computer-Assisted - methods Discriminant Analysis Humanities and Social Sciences Humans Image processing Leukemia Leukemia - blood Leukemia - diagnosis Leukocytes - classification Leukocytes - metabolism Leukocytes - pathology Lymphoblasts Lymphocytes Microscopy - methods multidisciplinary Nuclei Reproducibility of Results Science Segmentation Sensitivity and Specificity Staining and Labeling - methods Support Vector Machine |
title | An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Decision%20Support%20System%20for%20Leukaemia%20Diagnosis%20using%20Microscopic%20Blood%20Images&rft.jtitle=Scientific%20reports&rft.au=Chin%20Neoh,%20Siew&rft.date=2015-10-09&rft.volume=5&rft.issue=1&rft.spage=14938&rft.epage=14938&rft.pages=14938-14938&rft.artnum=14938&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep14938&rft_dat=%3Cproquest_pubme%3E1899773282%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899773282&rft_id=info:pmid/26450665&rfr_iscdi=true |