Loading…

An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images

This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segme...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-10, Vol.5 (1), p.14938-14938, Article 14938
Main Authors: Chin Neoh, Siew, Srisukkham, Worawut, Zhang, Li, Todryk, Stephen, Greystoke, Brigit, Peng Lim, Chee, Alamgir Hossain, Mohammed, Aslam, Nauman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83
cites cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83
container_end_page 14938
container_issue 1
container_start_page 14938
container_title Scientific reports
container_volume 5
creator Chin Neoh, Siew
Srisukkham, Worawut
Zhang, Li
Todryk, Stephen
Greystoke, Brigit
Peng Lim, Chee
Alamgir Hossain, Mohammed
Aslam, Nauman
description This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.
doi_str_mv 10.1038/srep14938
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899773282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKurCPyABNyqM5tVHNoJvB0Zc6FZCmqQ12iY1aQX_vZHRYdRsbuB-nHvPPQDsYnSMES1PYjA9ZpyWK2CTIJZNCCVkdem_AXZifEHpZYQzzNfBBslZhvI82wRPZw5O3WDa1jbGDfDSKButd_Bh7HsfBvjwEQfTwdoHODPjqzSdlfDSysb5aCMco3UNvLMq-Kh8bxU8b73XcNrJxsRtsFbLNpqd77oFHq-vHi9uJ7P7m-nF2WyiGC2HiZKKZowoXWCUUyop0YQxzZVEiBdZxeuqqhUpuOam0pQpWeU4Oai1kUaXdAuczmX7seqMVslIkK3og-1k-BBeWvG74-yzaPy7YBkvC0aTwMG3QPBvo4mD6GxU6SjSGT9GgQuCaY5wxhK6_wd98WNwyZ3AJedFQUlJEnU4p77ukhKqF8tgJL5iE4vYEru3vP2C_AkpAUdzIKaWa0xYGvlP7RPud6Mf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899773282</pqid></control><display><type>article</type><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><source>PubMed (Medline)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</creator><creatorcontrib>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</creatorcontrib><description>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep14938</identifier><identifier>PMID: 26450665</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/1564 ; 631/114/2164 ; Acute lymphoblastic leukemia ; Algorithms ; Blood ; Cell Nucleus - metabolism ; Classification ; Cluster Analysis ; Clustering ; Cytoplasm ; Cytoplasm - metabolism ; Databases, Factual ; Decision support systems ; Diagnosis, Computer-Assisted - methods ; Discriminant Analysis ; Humanities and Social Sciences ; Humans ; Image processing ; Leukemia ; Leukemia - blood ; Leukemia - diagnosis ; Leukocytes - classification ; Leukocytes - metabolism ; Leukocytes - pathology ; Lymphoblasts ; Lymphocytes ; Microscopy - methods ; multidisciplinary ; Nuclei ; Reproducibility of Results ; Science ; Segmentation ; Sensitivity and Specificity ; Staining and Labeling - methods ; Support Vector Machine</subject><ispartof>Scientific reports, 2015-10, Vol.5 (1), p.14938-14938, Article 14938</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</citedby><cites>FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899773282/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899773282?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin Neoh, Siew</creatorcontrib><creatorcontrib>Srisukkham, Worawut</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Todryk, Stephen</creatorcontrib><creatorcontrib>Greystoke, Brigit</creatorcontrib><creatorcontrib>Peng Lim, Chee</creatorcontrib><creatorcontrib>Alamgir Hossain, Mohammed</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</description><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>631/114/2164</subject><subject>Acute lymphoblastic leukemia</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Cell Nucleus - metabolism</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Databases, Factual</subject><subject>Decision support systems</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Discriminant Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Leukemia</subject><subject>Leukemia - blood</subject><subject>Leukemia - diagnosis</subject><subject>Leukocytes - classification</subject><subject>Leukocytes - metabolism</subject><subject>Leukocytes - pathology</subject><subject>Lymphoblasts</subject><subject>Lymphocytes</subject><subject>Microscopy - methods</subject><subject>multidisciplinary</subject><subject>Nuclei</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Staining and Labeling - methods</subject><subject>Support Vector Machine</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkUtLxDAUhYMoKurCPyABNyqM5tVHNoJvB0Zc6FZCmqQ12iY1aQX_vZHRYdRsbuB-nHvPPQDsYnSMES1PYjA9ZpyWK2CTIJZNCCVkdem_AXZifEHpZYQzzNfBBslZhvI82wRPZw5O3WDa1jbGDfDSKButd_Bh7HsfBvjwEQfTwdoHODPjqzSdlfDSysb5aCMco3UNvLMq-Kh8bxU8b73XcNrJxsRtsFbLNpqd77oFHq-vHi9uJ7P7m-nF2WyiGC2HiZKKZowoXWCUUyop0YQxzZVEiBdZxeuqqhUpuOam0pQpWeU4Oai1kUaXdAuczmX7seqMVslIkK3og-1k-BBeWvG74-yzaPy7YBkvC0aTwMG3QPBvo4mD6GxU6SjSGT9GgQuCaY5wxhK6_wd98WNwyZ3AJedFQUlJEnU4p77ukhKqF8tgJL5iE4vYEru3vP2C_AkpAUdzIKaWa0xYGvlP7RPud6Mf</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Chin Neoh, Siew</creator><creator>Srisukkham, Worawut</creator><creator>Zhang, Li</creator><creator>Todryk, Stephen</creator><creator>Greystoke, Brigit</creator><creator>Peng Lim, Chee</creator><creator>Alamgir Hossain, Mohammed</creator><creator>Aslam, Nauman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151009</creationdate><title>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</title><author>Chin Neoh, Siew ; Srisukkham, Worawut ; Zhang, Li ; Todryk, Stephen ; Greystoke, Brigit ; Peng Lim, Chee ; Alamgir Hossain, Mohammed ; Aslam, Nauman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>631/114/2164</topic><topic>Acute lymphoblastic leukemia</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Cell Nucleus - metabolism</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Databases, Factual</topic><topic>Decision support systems</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Discriminant Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Leukemia</topic><topic>Leukemia - blood</topic><topic>Leukemia - diagnosis</topic><topic>Leukocytes - classification</topic><topic>Leukocytes - metabolism</topic><topic>Leukocytes - pathology</topic><topic>Lymphoblasts</topic><topic>Lymphocytes</topic><topic>Microscopy - methods</topic><topic>multidisciplinary</topic><topic>Nuclei</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Staining and Labeling - methods</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin Neoh, Siew</creatorcontrib><creatorcontrib>Srisukkham, Worawut</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Todryk, Stephen</creatorcontrib><creatorcontrib>Greystoke, Brigit</creatorcontrib><creatorcontrib>Peng Lim, Chee</creatorcontrib><creatorcontrib>Alamgir Hossain, Mohammed</creatorcontrib><creatorcontrib>Aslam, Nauman</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin Neoh, Siew</au><au>Srisukkham, Worawut</au><au>Zhang, Li</au><au>Todryk, Stephen</au><au>Greystoke, Brigit</au><au>Peng Lim, Chee</au><au>Alamgir Hossain, Mohammed</au><au>Aslam, Nauman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>14938</spage><epage>14938</epage><pages>14938-14938</pages><artnum>14938</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm and background regions. Subsequently, a total of eighty features consisting of shape, texture and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26450665</pmid><doi>10.1038/srep14938</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-10, Vol.5 (1), p.14938-14938, Article 14938
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598743
source PubMed (Medline); Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/114/1564
631/114/2164
Acute lymphoblastic leukemia
Algorithms
Blood
Cell Nucleus - metabolism
Classification
Cluster Analysis
Clustering
Cytoplasm
Cytoplasm - metabolism
Databases, Factual
Decision support systems
Diagnosis, Computer-Assisted - methods
Discriminant Analysis
Humanities and Social Sciences
Humans
Image processing
Leukemia
Leukemia - blood
Leukemia - diagnosis
Leukocytes - classification
Leukocytes - metabolism
Leukocytes - pathology
Lymphoblasts
Lymphocytes
Microscopy - methods
multidisciplinary
Nuclei
Reproducibility of Results
Science
Segmentation
Sensitivity and Specificity
Staining and Labeling - methods
Support Vector Machine
title An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Decision%20Support%20System%20for%20Leukaemia%20Diagnosis%20using%20Microscopic%20Blood%20Images&rft.jtitle=Scientific%20reports&rft.au=Chin%20Neoh,%20Siew&rft.date=2015-10-09&rft.volume=5&rft.issue=1&rft.spage=14938&rft.epage=14938&rft.pages=14938-14938&rft.artnum=14938&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep14938&rft_dat=%3Cproquest_pubme%3E1899773282%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cac3542cd710633a32d244d9ca00975b9fbbfc279d9ebd34cab61450fdeaed83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899773282&rft_id=info:pmid/26450665&rfr_iscdi=true