Loading…

A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species

Photosynthetic assimilation of carbon is a defining feature of the plant kingdom. The fixation of large amounts of carbon dioxide supports the synthesis of carbohydrates, which make up the bulk of plant biomass. Exact measurements of carbon assimilation rates are therefore crucial due to their impac...

Full description

Saved in:
Bibliographic Details
Published in:Plant methods 2015-10, Vol.11 (1), p.48-48, Article 48
Main Authors: Kölling, Katharina, George, Gavin M, Künzli, Roland, Flütsch, Patrick, Zeeman, Samuel C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthetic assimilation of carbon is a defining feature of the plant kingdom. The fixation of large amounts of carbon dioxide supports the synthesis of carbohydrates, which make up the bulk of plant biomass. Exact measurements of carbon assimilation rates are therefore crucial due to their impact on the plants metabolism, growth and reproductive success. Commercially available single-leaf cuvettes allow the detailed analysis of many photosynthetic parameters, including gas exchange, of a selected leaf area. However, these cuvettes can be difficult to use with small herbaceous plants such as Arabidopsis thaliana or plants having delicate or textured leaves. Furthermore, data from single leaves can be difficult to scale-up for a plant shoot with a complex architecture and tissues in different physiological states. Therefore, we constructed a versatile system-EGES-1-to simultaneously measure gas exchange in the whole shoots of multiple individual plants. Our system was designed to be able record data continuously over several days. The EGES-1 system yielded comparable measurements for eight plants for up to 6 days in stable, physiologically realistic conditions. The chambers seals have negligible permeability to carbon dioxide and the system is designed so as to detect any bulk-flow air leaks. We show that the system can be used to monitor plant responses to changing environmental conditions, such as changes in illumination or stress treatments, and to compare plants with phenotypically severe mutations. By incorporating interchangeable lids, the system could be used to measure photosynthetic gas exchange in several genera such as Arabidopsis, Nicotiana, Pisum, Lotus and Mesembryanthemum. EGES-1 can be introduced into a variety of growth facilities and measure gas exchange in the shoots diverse plant species grown in different growth media. It is ideal for comparing photosynthetic carbon assimilation of wild-type and mutant plants and/or plants undergoing selected experimental treatments. The system can deliver valuable data for whole-plant growth studies and help understanding mutant phenotypes. Overall, the EGES-1 is complementary to the readily-available single leaf systems that focus more on the photosynthetic process in within the leaf lamina.
ISSN:1746-4811
1746-4811
DOI:10.1186/s13007-015-0089-z