Loading…
Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast
Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA,B,C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the ho...
Saved in:
Published in: | World journal of gastroenterology : WJG 2003-06, Vol.9 (6), p.1347-1351 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03 |
container_end_page | 1351 |
container_issue | 6 |
container_start_page | 1347 |
container_title | World journal of gastroenterology : WJG |
container_volume | 9 |
creator | Yao, Xiao Wang, Heng-Liang Shi, Zhao-Xing Yan, Xiao-Yu Feng, Er-Ling Yang, Bo-Lun Huang, Liu-Yu |
description | Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA,B,C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for beta-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
Among the 2X10(6) transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection. |
doi_str_mv | 10.3748/wjg.v9.i6.1347 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4611814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>wjg200306043</wanfj_id><sourcerecordid>wjg200306043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03</originalsourceid><addsrcrecordid>eNpVkUuP0zAUhS0EYsrAliXyArFLsH3dONkgMRWPSjMaxGNtOY6dukqdYrst-fc4asUMK8vyuZ_vOQeh15SUIHj9_rTty2NTuqqkwMUTtGCMNgWrOXmKFpQQUTTAxBV6EeOWEAawZM_RFWV1viz5Atl1Z3xy1mmV3OjxaPF35W_uvmHnkwlKJ-d7fHJpg39sXG-GQWE7mD_eBIfXe7XKuqOKzuN2wuk0FpupDa7DcYrJ7GbcZFRML9Ezq4ZoXl3Oa_Tr86efq6_F7f2X9erjbaFBLFNBQQiiSdUxoURlmGIdA9tYSiH7qpdaGMs0Z9AqC5wpWgNozduq4zU0lsA1-nDm7g_tznQ6ewtqkPvgdipMclRO_v_i3Ub241HyitKa8gx4ewaclLfK93I7HoLPK8ucNCMESEU4ZNm7yz9h_H0wMcmdi3pOx5vxEKXIQWfkzCvPQh3GGIOx_3ahRM4Nzlx5bKSr5NxgHnjz2MGD_FIZ_AUBLZkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73354614</pqid></control><display><type>article</type><title>Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast</title><source>NCBI_PubMed Central(免费)</source><creator>Yao, Xiao ; Wang, Heng-Liang ; Shi, Zhao-Xing ; Yan, Xiao-Yu ; Feng, Er-Ling ; Yang, Bo-Lun ; Huang, Liu-Yu</creator><creatorcontrib>Yao, Xiao ; Wang, Heng-Liang ; Shi, Zhao-Xing ; Yan, Xiao-Yu ; Feng, Er-Ling ; Yang, Bo-Lun ; Huang, Liu-Yu</creatorcontrib><description>Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA,B,C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for beta-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
Among the 2X10(6) transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection.</description><identifier>ISSN: 1007-9327</identifier><identifier>EISSN: 2219-2840</identifier><identifier>DOI: 10.3748/wjg.v9.i6.1347</identifier><identifier>PMID: 12800254</identifier><language>eng</language><publisher>United States: College of Environmental and Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China%Beijing Instiute of Beiotechnoloty, Beijing 100071, China</publisher><subject>Adaptor Proteins, Signal Transducing ; Adhesins, Bacterial ; Antigens, Bacterial - physiology ; Basic Research ; Cytoskeletal Proteins ; Humans ; Nuclear Proteins - physiology ; ran GTP-Binding Protein - physiology ; Shigella flexneri - physiology ; Two-Hybrid System Techniques ; Yeasts</subject><ispartof>World journal of gastroenterology : WJG, 2003-06, Vol.9 (6), p.1347-1351</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved. 2003</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03</citedby><cites>FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/wjg/wjg.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611814/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611814/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12800254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Xiao</creatorcontrib><creatorcontrib>Wang, Heng-Liang</creatorcontrib><creatorcontrib>Shi, Zhao-Xing</creatorcontrib><creatorcontrib>Yan, Xiao-Yu</creatorcontrib><creatorcontrib>Feng, Er-Ling</creatorcontrib><creatorcontrib>Yang, Bo-Lun</creatorcontrib><creatorcontrib>Huang, Liu-Yu</creatorcontrib><title>Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast</title><title>World journal of gastroenterology : WJG</title><addtitle>World J Gastroenterol</addtitle><description>Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA,B,C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for beta-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
Among the 2X10(6) transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Adhesins, Bacterial</subject><subject>Antigens, Bacterial - physiology</subject><subject>Basic Research</subject><subject>Cytoskeletal Proteins</subject><subject>Humans</subject><subject>Nuclear Proteins - physiology</subject><subject>ran GTP-Binding Protein - physiology</subject><subject>Shigella flexneri - physiology</subject><subject>Two-Hybrid System Techniques</subject><subject>Yeasts</subject><issn>1007-9327</issn><issn>2219-2840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpVkUuP0zAUhS0EYsrAliXyArFLsH3dONkgMRWPSjMaxGNtOY6dukqdYrst-fc4asUMK8vyuZ_vOQeh15SUIHj9_rTty2NTuqqkwMUTtGCMNgWrOXmKFpQQUTTAxBV6EeOWEAawZM_RFWV1viz5Atl1Z3xy1mmV3OjxaPF35W_uvmHnkwlKJ-d7fHJpg39sXG-GQWE7mD_eBIfXe7XKuqOKzuN2wuk0FpupDa7DcYrJ7GbcZFRML9Ezq4ZoXl3Oa_Tr86efq6_F7f2X9erjbaFBLFNBQQiiSdUxoURlmGIdA9tYSiH7qpdaGMs0Z9AqC5wpWgNozduq4zU0lsA1-nDm7g_tznQ6ewtqkPvgdipMclRO_v_i3Ub241HyitKa8gx4ewaclLfK93I7HoLPK8ucNCMESEU4ZNm7yz9h_H0wMcmdi3pOx5vxEKXIQWfkzCvPQh3GGIOx_3ahRM4Nzlx5bKSr5NxgHnjz2MGD_FIZ_AUBLZkP</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Yao, Xiao</creator><creator>Wang, Heng-Liang</creator><creator>Shi, Zhao-Xing</creator><creator>Yan, Xiao-Yu</creator><creator>Feng, Er-Ling</creator><creator>Yang, Bo-Lun</creator><creator>Huang, Liu-Yu</creator><general>College of Environmental and Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China%Beijing Instiute of Beiotechnoloty, Beijing 100071, China</general><general>Baishideng Publishing Group Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>5PM</scope></search><sort><creationdate>20030601</creationdate><title>Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast</title><author>Yao, Xiao ; Wang, Heng-Liang ; Shi, Zhao-Xing ; Yan, Xiao-Yu ; Feng, Er-Ling ; Yang, Bo-Lun ; Huang, Liu-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Adhesins, Bacterial</topic><topic>Antigens, Bacterial - physiology</topic><topic>Basic Research</topic><topic>Cytoskeletal Proteins</topic><topic>Humans</topic><topic>Nuclear Proteins - physiology</topic><topic>ran GTP-Binding Protein - physiology</topic><topic>Shigella flexneri - physiology</topic><topic>Two-Hybrid System Techniques</topic><topic>Yeasts</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xiao</creatorcontrib><creatorcontrib>Wang, Heng-Liang</creatorcontrib><creatorcontrib>Shi, Zhao-Xing</creatorcontrib><creatorcontrib>Yan, Xiao-Yu</creatorcontrib><creatorcontrib>Feng, Er-Ling</creatorcontrib><creatorcontrib>Yang, Bo-Lun</creatorcontrib><creatorcontrib>Huang, Liu-Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of gastroenterology : WJG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xiao</au><au>Wang, Heng-Liang</au><au>Shi, Zhao-Xing</au><au>Yan, Xiao-Yu</au><au>Feng, Er-Ling</au><au>Yang, Bo-Lun</au><au>Huang, Liu-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast</atitle><jtitle>World journal of gastroenterology : WJG</jtitle><addtitle>World J Gastroenterol</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>9</volume><issue>6</issue><spage>1347</spage><epage>1351</epage><pages>1347-1351</pages><issn>1007-9327</issn><eissn>2219-2840</eissn><abstract>Bacillary dysentery caused by Shigella flexneri is still a threat to human health. Of four invasion plasmid antigen proteins (IpaA,B,C and D), IpaC plays an important role in the pathogenicity of this pathogen. The purpose of this study was to investigate the proteins interacting with IpaC in the host cell during the pathogenic process of this disease.
By applying two-hybrid system, the bait plasmid containing ipaC gene was constructed and designated pGBKT-ipaC. The bait plasmid was transformed AH109, and proved to express IpaC and then HeLa cDNA library plasmids were introduced into the above transformed AH109. The transformation mixture was plated on medium lacking Trp, Leu, and His in the initial screen, then restreaked on medium lacking Trp, Leu, His and Ade. Colonies growing on the selection medium were further assayed for beta-galactosidase activity. BLAST was carried out in the database after sequencing the inserted cDNA of the positive library plasmid.
Among the 2X10(6) transformants, 64 positive clones were obtained as determined by activation of His, Ade and LacZ reporter genes. Sequence analysis revealed that cDNA inserts of two colonies were highly homologous to a known human protein, RanBPM.
These results provide evidence that IpaC may be involved in the invasion process of S. flexneri by interacting with RanBPM, and RanBPM is most likely to be the downstream target of IpaC in the cascade events of S. flexneri infection.</abstract><cop>United States</cop><pub>College of Environmental and Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China%Beijing Instiute of Beiotechnoloty, Beijing 100071, China</pub><pmid>12800254</pmid><doi>10.3748/wjg.v9.i6.1347</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-9327 |
ispartof | World journal of gastroenterology : WJG, 2003-06, Vol.9 (6), p.1347-1351 |
issn | 1007-9327 2219-2840 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4611814 |
source | NCBI_PubMed Central(免费) |
subjects | Adaptor Proteins, Signal Transducing Adhesins, Bacterial Antigens, Bacterial - physiology Basic Research Cytoskeletal Proteins Humans Nuclear Proteins - physiology ran GTP-Binding Protein - physiology Shigella flexneri - physiology Two-Hybrid System Techniques Yeasts |
title | Identification of RanBMP interacting with Shigella flexneri IpaC invasin by two-hybrid system of yeast |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20RanBMP%20interacting%20with%20Shigella%20flexneri%20IpaC%20invasin%20by%20two-hybrid%20system%20of%20yeast&rft.jtitle=World%20journal%20of%20gastroenterology%20:%20WJG&rft.au=Yao,%20Xiao&rft.date=2003-06-01&rft.volume=9&rft.issue=6&rft.spage=1347&rft.epage=1351&rft.pages=1347-1351&rft.issn=1007-9327&rft.eissn=2219-2840&rft_id=info:doi/10.3748/wjg.v9.i6.1347&rft_dat=%3Cwanfang_jour_pubme%3Ewjg200306043%3C/wanfang_jour_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-13770c06d27a76e2a2d23f9f11322185c7ef2c423baf342a1833cc4b6d4839f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73354614&rft_id=info:pmid/12800254&rft_wanfj_id=wjg200306043&rfr_iscdi=true |