Loading…

Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits

The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2015-10, Vol.88 (2), p.345-356
Main Authors: Rothwell, Patrick E., Hayton, Scott J., Sun, Gordon L., Fuccillo, Marc V., Lim, Byung Kook, Malenka, Robert C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3
cites cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3
container_end_page 356
container_issue 2
container_start_page 345
container_title Neuron (Cambridge, Mass.)
container_volume 88
creator Rothwell, Patrick E.
Hayton, Scott J.
Sun, Gordon L.
Fuccillo, Marc V.
Lim, Byung Kook
Malenka, Robert C.
description The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines. •In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.
doi_str_mv 10.1016/j.neuron.2015.09.035
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4618801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315008247</els_id><sourcerecordid>1732833552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</originalsourceid><addsrcrecordid>eNqNkU1rVDEUhoModqz-A5ELbtzcMbn5uMlGkKHaQmHE6lJCJjmpGe4kY5Jb6L83w7T1YyGuEshz3iTvg9BLgpcEE_F2u4ww5xSXAyZ8idUSU_4ILQhWY8-IUo_RAkslejGM9AQ9K2WLMWFckafoZBBMsWFUC_TtIu7n2ncmum4918P-ag82-GC7z3A9T6aGFLvkuyvIwUzdOjvI3SfIPuWdiRa6zW23SrkGm0ptSG3QKmQ7h1qeoyfeTAVe3K2n6OuHsy-r8_5y_fFi9f6yt3xgtbdCCgxUETYYL6XjVhlDFBHEe-yY3HjnOXWKKTlKiRvKvRu5s9SMDIShp-jdMXc_b3bgLMSazaT3OexMvtXJBP3nSQzf9XW60UyQFkhawJu7gJx-zFCq3oViYZpMhDQXTUY6SEo5H_4DHUbWSCUa-vovdJvmHFsTB4oLOVDFGsWOlM2plAz-4d0E64NqvdVH1fqgWmOlm-o29ur3Pz8M3bv9VQq05m8CZF1sgGbMhQy2apfCv2_4CS07vUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725682394</pqid></control><display><type>article</type><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</creator><creatorcontrib>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</creatorcontrib><description>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines. •In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.09.035</identifier><identifier>PMID: 26494279</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; basal ganglia ; Behavior ; circuit ; Corpus Striatum - physiology ; Dopamine ; Excitatory Postsynaptic Potentials - physiology ; Experiments ; Male ; medium spiny neuron ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; motor cortex ; Motor Cortex - physiology ; mouse ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; optogenetics ; Rodents ; serial order ; striatum ; Surgery ; synaptic plasticity</subject><ispartof>Neuron (Cambridge, Mass.), 2015-10, Vol.88 (2), p.345-356</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</citedby><cites>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26494279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothwell, Patrick E.</creatorcontrib><creatorcontrib>Hayton, Scott J.</creatorcontrib><creatorcontrib>Sun, Gordon L.</creatorcontrib><creatorcontrib>Fuccillo, Marc V.</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines. •In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</description><subject>Animals</subject><subject>basal ganglia</subject><subject>Behavior</subject><subject>circuit</subject><subject>Corpus Striatum - physiology</subject><subject>Dopamine</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Experiments</subject><subject>Male</subject><subject>medium spiny neuron</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>mouse</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>optogenetics</subject><subject>Rodents</subject><subject>serial order</subject><subject>striatum</subject><subject>Surgery</subject><subject>synaptic plasticity</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rVDEUhoModqz-A5ELbtzcMbn5uMlGkKHaQmHE6lJCJjmpGe4kY5Jb6L83w7T1YyGuEshz3iTvg9BLgpcEE_F2u4ww5xSXAyZ8idUSU_4ILQhWY8-IUo_RAkslejGM9AQ9K2WLMWFckafoZBBMsWFUC_TtIu7n2ncmum4918P-ag82-GC7z3A9T6aGFLvkuyvIwUzdOjvI3SfIPuWdiRa6zW23SrkGm0ptSG3QKmQ7h1qeoyfeTAVe3K2n6OuHsy-r8_5y_fFi9f6yt3xgtbdCCgxUETYYL6XjVhlDFBHEe-yY3HjnOXWKKTlKiRvKvRu5s9SMDIShp-jdMXc_b3bgLMSazaT3OexMvtXJBP3nSQzf9XW60UyQFkhawJu7gJx-zFCq3oViYZpMhDQXTUY6SEo5H_4DHUbWSCUa-vovdJvmHFsTB4oLOVDFGsWOlM2plAz-4d0E64NqvdVH1fqgWmOlm-o29ur3Pz8M3bv9VQq05m8CZF1sgGbMhQy2apfCv2_4CS07vUw</recordid><startdate>20151021</startdate><enddate>20151021</enddate><creator>Rothwell, Patrick E.</creator><creator>Hayton, Scott J.</creator><creator>Sun, Gordon L.</creator><creator>Fuccillo, Marc V.</creator><creator>Lim, Byung Kook</creator><creator>Malenka, Robert C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151021</creationdate><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><author>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>basal ganglia</topic><topic>Behavior</topic><topic>circuit</topic><topic>Corpus Striatum - physiology</topic><topic>Dopamine</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Experiments</topic><topic>Male</topic><topic>medium spiny neuron</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>mouse</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>optogenetics</topic><topic>Rodents</topic><topic>serial order</topic><topic>striatum</topic><topic>Surgery</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothwell, Patrick E.</creatorcontrib><creatorcontrib>Hayton, Scott J.</creatorcontrib><creatorcontrib>Sun, Gordon L.</creatorcontrib><creatorcontrib>Fuccillo, Marc V.</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothwell, Patrick E.</au><au>Hayton, Scott J.</au><au>Sun, Gordon L.</au><au>Fuccillo, Marc V.</au><au>Lim, Byung Kook</au><au>Malenka, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-10-21</date><risdate>2015</risdate><volume>88</volume><issue>2</issue><spage>345</spage><epage>356</epage><pages>345-356</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines. •In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26494279</pmid><doi>10.1016/j.neuron.2015.09.035</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-10, Vol.88 (2), p.345-356
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4618801
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
basal ganglia
Behavior
circuit
Corpus Striatum - physiology
Dopamine
Excitatory Postsynaptic Potentials - physiology
Experiments
Male
medium spiny neuron
Mice
Mice, Inbred C57BL
Mice, Transgenic
motor cortex
Motor Cortex - physiology
mouse
Nerve Net - physiology
Neuronal Plasticity - physiology
optogenetics
Rodents
serial order
striatum
Surgery
synaptic plasticity
title Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-%20and%20Output-Specific%20Regulation%20of%20Serial%20Order%20Performance%20by%20Corticostriatal%20Circuits&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Rothwell,%20Patrick%C2%A0E.&rft.date=2015-10-21&rft.volume=88&rft.issue=2&rft.spage=345&rft.epage=356&rft.pages=345-356&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.09.035&rft_dat=%3Cproquest_pubme%3E1732833552%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1725682394&rft_id=info:pmid/26494279&rfr_iscdi=true