Loading…
Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits
The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2015-10, Vol.88 (2), p.345-356 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3 |
container_end_page | 356 |
container_issue | 2 |
container_start_page | 345 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 88 |
creator | Rothwell, Patrick E. Hayton, Scott J. Sun, Gordon L. Fuccillo, Marc V. Lim, Byung Kook Malenka, Robert C. |
description | The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines.
•In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway
Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia. |
doi_str_mv | 10.1016/j.neuron.2015.09.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4618801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315008247</els_id><sourcerecordid>1732833552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</originalsourceid><addsrcrecordid>eNqNkU1rVDEUhoModqz-A5ELbtzcMbn5uMlGkKHaQmHE6lJCJjmpGe4kY5Jb6L83w7T1YyGuEshz3iTvg9BLgpcEE_F2u4ww5xSXAyZ8idUSU_4ILQhWY8-IUo_RAkslejGM9AQ9K2WLMWFckafoZBBMsWFUC_TtIu7n2ncmum4918P-ag82-GC7z3A9T6aGFLvkuyvIwUzdOjvI3SfIPuWdiRa6zW23SrkGm0ptSG3QKmQ7h1qeoyfeTAVe3K2n6OuHsy-r8_5y_fFi9f6yt3xgtbdCCgxUETYYL6XjVhlDFBHEe-yY3HjnOXWKKTlKiRvKvRu5s9SMDIShp-jdMXc_b3bgLMSazaT3OexMvtXJBP3nSQzf9XW60UyQFkhawJu7gJx-zFCq3oViYZpMhDQXTUY6SEo5H_4DHUbWSCUa-vovdJvmHFsTB4oLOVDFGsWOlM2plAz-4d0E64NqvdVH1fqgWmOlm-o29ur3Pz8M3bv9VQq05m8CZF1sgGbMhQy2apfCv2_4CS07vUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725682394</pqid></control><display><type>article</type><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</creator><creatorcontrib>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</creatorcontrib><description>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines.
•In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway
Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.09.035</identifier><identifier>PMID: 26494279</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; basal ganglia ; Behavior ; circuit ; Corpus Striatum - physiology ; Dopamine ; Excitatory Postsynaptic Potentials - physiology ; Experiments ; Male ; medium spiny neuron ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; motor cortex ; Motor Cortex - physiology ; mouse ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; optogenetics ; Rodents ; serial order ; striatum ; Surgery ; synaptic plasticity</subject><ispartof>Neuron (Cambridge, Mass.), 2015-10, Vol.88 (2), p.345-356</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</citedby><cites>FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26494279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothwell, Patrick E.</creatorcontrib><creatorcontrib>Hayton, Scott J.</creatorcontrib><creatorcontrib>Sun, Gordon L.</creatorcontrib><creatorcontrib>Fuccillo, Marc V.</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines.
•In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway
Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</description><subject>Animals</subject><subject>basal ganglia</subject><subject>Behavior</subject><subject>circuit</subject><subject>Corpus Striatum - physiology</subject><subject>Dopamine</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Experiments</subject><subject>Male</subject><subject>medium spiny neuron</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>mouse</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>optogenetics</subject><subject>Rodents</subject><subject>serial order</subject><subject>striatum</subject><subject>Surgery</subject><subject>synaptic plasticity</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rVDEUhoModqz-A5ELbtzcMbn5uMlGkKHaQmHE6lJCJjmpGe4kY5Jb6L83w7T1YyGuEshz3iTvg9BLgpcEE_F2u4ww5xSXAyZ8idUSU_4ILQhWY8-IUo_RAkslejGM9AQ9K2WLMWFckafoZBBMsWFUC_TtIu7n2ncmum4918P-ag82-GC7z3A9T6aGFLvkuyvIwUzdOjvI3SfIPuWdiRa6zW23SrkGm0ptSG3QKmQ7h1qeoyfeTAVe3K2n6OuHsy-r8_5y_fFi9f6yt3xgtbdCCgxUETYYL6XjVhlDFBHEe-yY3HjnOXWKKTlKiRvKvRu5s9SMDIShp-jdMXc_b3bgLMSazaT3OexMvtXJBP3nSQzf9XW60UyQFkhawJu7gJx-zFCq3oViYZpMhDQXTUY6SEo5H_4DHUbWSCUa-vovdJvmHFsTB4oLOVDFGsWOlM2plAz-4d0E64NqvdVH1fqgWmOlm-o29ur3Pz8M3bv9VQq05m8CZF1sgGbMhQy2apfCv2_4CS07vUw</recordid><startdate>20151021</startdate><enddate>20151021</enddate><creator>Rothwell, Patrick E.</creator><creator>Hayton, Scott J.</creator><creator>Sun, Gordon L.</creator><creator>Fuccillo, Marc V.</creator><creator>Lim, Byung Kook</creator><creator>Malenka, Robert C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151021</creationdate><title>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</title><author>Rothwell, Patrick E. ; Hayton, Scott J. ; Sun, Gordon L. ; Fuccillo, Marc V. ; Lim, Byung Kook ; Malenka, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>basal ganglia</topic><topic>Behavior</topic><topic>circuit</topic><topic>Corpus Striatum - physiology</topic><topic>Dopamine</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Experiments</topic><topic>Male</topic><topic>medium spiny neuron</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>mouse</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>optogenetics</topic><topic>Rodents</topic><topic>serial order</topic><topic>striatum</topic><topic>Surgery</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothwell, Patrick E.</creatorcontrib><creatorcontrib>Hayton, Scott J.</creatorcontrib><creatorcontrib>Sun, Gordon L.</creatorcontrib><creatorcontrib>Fuccillo, Marc V.</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothwell, Patrick E.</au><au>Hayton, Scott J.</au><au>Sun, Gordon L.</au><au>Fuccillo, Marc V.</au><au>Lim, Byung Kook</au><au>Malenka, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-10-21</date><risdate>2015</risdate><volume>88</volume><issue>2</issue><spage>345</spage><epage>356</epage><pages>345-356</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning. This experience-dependent and synapse-specific form of plasticity may sculpt the balance of activity in basal ganglia circuits during sequential movements, driving a disparity in striatal output that favors the direct pathway. This disparity is necessary for execution of responses in serial order, even though both direct and indirect pathways are active during movement initiation, suggesting dynamic modulation of corticostriatal circuitry contributes to the choreography of behavioral routines.
•In a serial order task, secondary motor cortex input to striatum initiates responses•Striatal direct pathway is necessary for completion of responses in serial order•Serial order learning strengthens synapses connecting motor cortex and striatum•Task performance requires a disparity of striatal output favoring the direct pathway
Many behaviors involve distinct movements performed in a specific serial order. Rothwell et al. show serial order performance is regulated by a monosynaptic pathway linking secondary motor cortex to striatal cells that form the direct pathway through the basal ganglia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26494279</pmid><doi>10.1016/j.neuron.2015.09.035</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2015-10, Vol.88 (2), p.345-356 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4618801 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals basal ganglia Behavior circuit Corpus Striatum - physiology Dopamine Excitatory Postsynaptic Potentials - physiology Experiments Male medium spiny neuron Mice Mice, Inbred C57BL Mice, Transgenic motor cortex Motor Cortex - physiology mouse Nerve Net - physiology Neuronal Plasticity - physiology optogenetics Rodents serial order striatum Surgery synaptic plasticity |
title | Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-%20and%20Output-Specific%20Regulation%20of%20Serial%20Order%20Performance%20by%20Corticostriatal%20Circuits&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Rothwell,%20Patrick%C2%A0E.&rft.date=2015-10-21&rft.volume=88&rft.issue=2&rft.spage=345&rft.epage=356&rft.pages=345-356&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.09.035&rft_dat=%3Cproquest_pubme%3E1732833552%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-c6860e39142af88d5c9aa19161ff0d48bfdf53d949878800e35fd75dc3a74e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1725682394&rft_id=info:pmid/26494279&rfr_iscdi=true |