Loading…

Bonding in Complexes of Bis(pentalene)dititanium, Ti2(C8H6)2

Bonding in the bis­(pentalene)­dititanium “double-sandwich” species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by density functional calculations and fragment analysis. Ti2Pn2 with C 2v symmetry has two metal–metal bonds and a low-lying metal-based empty orbit...

Full description

Saved in:
Bibliographic Details
Published in:Organometallics 2015-10, Vol.34 (20), p.4830-4843
Main Authors: Kilpatrick, Alexander F. R, Green, Jennifer C, Cloke, F. Geoffrey N
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bonding in the bis­(pentalene)­dititanium “double-sandwich” species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by density functional calculations and fragment analysis. Ti2Pn2 with C 2v symmetry has two metal–metal bonds and a low-lying metal-based empty orbital, all three frontier orbitals having a1 symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bis­(cyclopentadienyl) metal fragments. Electrochemical studies on Ti2Pn† 2 (Pn† = 1,4-{SiiPr3}2C8H4) revealed a one-electron oxidation, and the formally mixed-valence Ti­(II)–Ti­(III) cationic complex [Ti2Pn† 2]­[B­(C6F5)4] has been structurally characterized. Theory indicates an S = 1/2 ground-state electronic configuration for the latter, which was confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide binds symmetrically to Ti2Pn2, preserving the C 2v symmetry, as does carbon disulfide. The dominant interaction in Ti2Pn2CO2 is σ donation into the LUMO of bent CO2, and donation from the O atoms to Ti2Pn2 is minimal, whereas in Ti2Pn2CS2 there is significant interaction with the S atoms. The bridging O atom in the mono­(oxo) species Ti2Pn2O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analogue Ti2Pn2S behaves similarly. Ti2Pn2 is also capable of binding one, two, or three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding, and an asymmetric structure is found. The dicarbonyl adduct Ti2Pn2(CO)2 has Cs symmetry with the Ti2Pn2 unit acting as two MCp2 fragments. Synthetic studies showed that in the presence of excess CO the tricarbonyl complex Ti2Pn† 2(CO)3 is formed, which optimizes to an asymmetric structure with one semibridging and two terminal CO ligands. Low-temperature 13C NMR spectroscopy revealed a rapid dynamic exchange between the two bound CO sites and free CO.
ISSN:0276-7333
1520-6041
DOI:10.1021/acs.organomet.5b00363