Loading…
A quantitative neural network approach to understanding aging phenotypes
Highlights • We review literature on neural network integrity in healthy and pathological aging. • Imaging analysis approaches that better differentiate cognitive outcomes are needed. • We propose new strategies for predicting cognitive trajectories using graph theory.
Saved in:
Published in: | Ageing research reviews 2014-05, Vol.15, p.44-50 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3 |
container_end_page | 50 |
container_issue | |
container_start_page | 44 |
container_title | Ageing research reviews |
container_volume | 15 |
creator | Ash, Jessica A Rapp, Peter R |
description | Highlights • We review literature on neural network integrity in healthy and pathological aging. • Imaging analysis approaches that better differentiate cognitive outcomes are needed. • We propose new strategies for predicting cognitive trajectories using graph theory. |
doi_str_mv | 10.1016/j.arr.2014.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568163714000178</els_id><sourcerecordid>1540107242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0Eou3CD-CCckHikuBxHCcRUqWqohSpEgfgbDnOZNfbrJ3azqL99zjsUj4OSJZtyc87M553CHkFtAAK4t22UN4XjAIvKCsohSfkHJqa5a3g7dN0r0STgyjrM3IRwjYBohXsOTljvOJNy6pzcnuVPczKRhNVNHvMLM5ejemI352_z9Q0eaf0Josum22PPkRle2PXmVov-7RB6-JhwvCCPBvUGPDl6VyRbzcfvl7f5nefP366vrrLdVWKmAM0XVq01rQBzXXbdrwegJdC0KrsauADVRzbrufdgLzRveYsfbYthVJ1o8sVuTzGneZuh71GG1PBcvJmp_xBOmXk3y_WbOTa7SUXjEPKsSJvTwG8e5gxRLkzQeM4KotuDhIqToHWjLOEwhHV3oXgcXhMA1QuDsitTA7IxQFJmUwNTprXf9b3qPjV8gS8OQEqaDUOXlltwm-u4aItfwZ6f-QwdXNv0MugDVqNvfGoo-yd-W8Zl_-o9WisSQnv8YBh62Zvk00SZEgC-WUZlWVSgNMkr5vyBytHuZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540107242</pqid></control><display><type>article</type><title>A quantitative neural network approach to understanding aging phenotypes</title><source>ScienceDirect Freedom Collection</source><creator>Ash, Jessica A ; Rapp, Peter R</creator><creatorcontrib>Ash, Jessica A ; Rapp, Peter R</creatorcontrib><description>Highlights • We review literature on neural network integrity in healthy and pathological aging. • Imaging analysis approaches that better differentiate cognitive outcomes are needed. • We propose new strategies for predicting cognitive trajectories using graph theory.</description><identifier>ISSN: 1568-1637</identifier><identifier>EISSN: 1872-9649</identifier><identifier>DOI: 10.1016/j.arr.2014.02.001</identifier><identifier>PMID: 24548925</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adult ; Aged ; Aging - physiology ; Biological and medical sciences ; Development. Metamorphosis. Moult. Ageing ; Fundamental and applied biological sciences. Psychology ; General aspects ; Graph theory ; Humans ; Internal Medicine ; Medical sciences ; Middle Aged ; Models, Neurological ; Nerve Net - growth & development ; Nerve Net - physiology ; Neural networks ; Neurocognitive aging ; Neurology ; Phenotype ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Young Adult</subject><ispartof>Ageing research reviews, 2014-05, Vol.15, p.44-50</ispartof><rights>2014</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3</citedby><cites>FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28469301$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24548925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ash, Jessica A</creatorcontrib><creatorcontrib>Rapp, Peter R</creatorcontrib><title>A quantitative neural network approach to understanding aging phenotypes</title><title>Ageing research reviews</title><addtitle>Ageing Res Rev</addtitle><description>Highlights • We review literature on neural network integrity in healthy and pathological aging. • Imaging analysis approaches that better differentiate cognitive outcomes are needed. • We propose new strategies for predicting cognitive trajectories using graph theory.</description><subject>Adult</subject><subject>Aged</subject><subject>Aging - physiology</subject><subject>Biological and medical sciences</subject><subject>Development. Metamorphosis. Moult. Ageing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Models, Neurological</subject><subject>Nerve Net - growth & development</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neurocognitive aging</subject><subject>Neurology</subject><subject>Phenotype</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Young Adult</subject><issn>1568-1637</issn><issn>1872-9649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhi0Eou3CD-CCckHikuBxHCcRUqWqohSpEgfgbDnOZNfbrJ3azqL99zjsUj4OSJZtyc87M553CHkFtAAK4t22UN4XjAIvKCsohSfkHJqa5a3g7dN0r0STgyjrM3IRwjYBohXsOTljvOJNy6pzcnuVPczKRhNVNHvMLM5ejemI352_z9Q0eaf0Josum22PPkRle2PXmVov-7RB6-JhwvCCPBvUGPDl6VyRbzcfvl7f5nefP366vrrLdVWKmAM0XVq01rQBzXXbdrwegJdC0KrsauADVRzbrufdgLzRveYsfbYthVJ1o8sVuTzGneZuh71GG1PBcvJmp_xBOmXk3y_WbOTa7SUXjEPKsSJvTwG8e5gxRLkzQeM4KotuDhIqToHWjLOEwhHV3oXgcXhMA1QuDsitTA7IxQFJmUwNTprXf9b3qPjV8gS8OQEqaDUOXlltwm-u4aItfwZ6f-QwdXNv0MugDVqNvfGoo-yd-W8Zl_-o9WisSQnv8YBh62Zvk00SZEgC-WUZlWVSgNMkr5vyBytHuZ0</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Ash, Jessica A</creator><creator>Rapp, Peter R</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>A quantitative neural network approach to understanding aging phenotypes</title><author>Ash, Jessica A ; Rapp, Peter R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aging - physiology</topic><topic>Biological and medical sciences</topic><topic>Development. Metamorphosis. Moult. Ageing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Models, Neurological</topic><topic>Nerve Net - growth & development</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neurocognitive aging</topic><topic>Neurology</topic><topic>Phenotype</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ash, Jessica A</creatorcontrib><creatorcontrib>Rapp, Peter R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ageing research reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ash, Jessica A</au><au>Rapp, Peter R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative neural network approach to understanding aging phenotypes</atitle><jtitle>Ageing research reviews</jtitle><addtitle>Ageing Res Rev</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>15</volume><spage>44</spage><epage>50</epage><pages>44-50</pages><issn>1568-1637</issn><eissn>1872-9649</eissn><abstract>Highlights • We review literature on neural network integrity in healthy and pathological aging. • Imaging analysis approaches that better differentiate cognitive outcomes are needed. • We propose new strategies for predicting cognitive trajectories using graph theory.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24548925</pmid><doi>10.1016/j.arr.2014.02.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-1637 |
ispartof | Ageing research reviews, 2014-05, Vol.15, p.44-50 |
issn | 1568-1637 1872-9649 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624105 |
source | ScienceDirect Freedom Collection |
subjects | Adult Aged Aging - physiology Biological and medical sciences Development. Metamorphosis. Moult. Ageing Fundamental and applied biological sciences. Psychology General aspects Graph theory Humans Internal Medicine Medical sciences Middle Aged Models, Neurological Nerve Net - growth & development Nerve Net - physiology Neural networks Neurocognitive aging Neurology Phenotype Vertebrates: anatomy and physiology, studies on body, several organs or systems Young Adult |
title | A quantitative neural network approach to understanding aging phenotypes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20neural%20network%20approach%20to%20understanding%20aging%20phenotypes&rft.jtitle=Ageing%20research%20reviews&rft.au=Ash,%20Jessica%20A&rft.date=2014-05-01&rft.volume=15&rft.spage=44&rft.epage=50&rft.pages=44-50&rft.issn=1568-1637&rft.eissn=1872-9649&rft_id=info:doi/10.1016/j.arr.2014.02.001&rft_dat=%3Cproquest_pubme%3E1540107242%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-118b18b07c081c4c99b47f14366053b714f0a4e9bd4bfe48cdc42101936aa78c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1540107242&rft_id=info:pmid/24548925&rfr_iscdi=true |