Loading…
Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring
Goal: We tested the hypothesis that the ballistocardiogram (BCG) waveform could yield a viable proximal timing reference for measuring pulse transit time (PTT). Methods: From 15 healthy volunteers, we measured PTT as the time interval between BCG and a noninvasively measured finger blood pressure (B...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2015-11, Vol.62 (11), p.2657-2664 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Goal: We tested the hypothesis that the ballistocardiogram (BCG) waveform could yield a viable proximal timing reference for measuring pulse transit time (PTT). Methods: From 15 healthy volunteers, we measured PTT as the time interval between BCG and a noninvasively measured finger blood pressure (BP) waveform. To evaluate the efficacy of the BCG-based PTT in estimating BP, we likewise measured pulse arrival time (PAT) using the electrocardiogram (ECG) as proximal timing reference and compared their correlations to BP. Results: BCG-based PTT was correlated with BP reasonably well: the mean correlation coefficient (r ) was 0.62 for diastolic (DP), 0.65 for mean (MP), and 0.66 for systolic (SP) pressures when the intersecting tangent method was used as distal timing reference. Comparing four distal timing references (intersecting tangent, maximum second derivative, diastolic minimum, and systolic maximum), PTT exhibited the best correlation with BP when the systolic maximum method was used (mean r value was 0.66 for DP, 0.67 for MP, and 0.70 for SP). PTT was more strongly correlated with DP than PAT regardless of the distal timing reference: mean r value was 0.62 versus 0.51 (p = 0.07) for intersecting tangent, 0.54 versus 0.49 (p = 0.17) for maximum second derivative, 0.58 versus 0.52 (p = 0.37) for diastolic minimum, and 0.66 versus 0.60 (p = 0.10) for systolic maximum methods. The difference between PTT and PAT in estimating DP was significant (p = 0.01) when the r values associated with all the distal timing references were compared altogether. However, PAT appeared to outperform PTT in estimating SP ( p = 0.31 when the r values associated with all the distal timing references were compared altogether). Conclusion: We conclude that BCG is an adequate proximal timing reference in deriving PTT, and that BCG-based PTT may be superior to ECG-based PAT in estimating DP. Significance: PTT with BCG as proximal timing reference has potential to enable convenient and ubiquitous cuffless BP monitoring. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2015.2440291 |