Loading…
Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data
In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult. We propose a supervised framewor...
Saved in:
Published in: | Bioinformatics 2015-09, Vol.31 (17), p.2822-2828 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853 |
container_end_page | 2828 |
container_issue | 17 |
container_start_page | 2822 |
container_title | Bioinformatics |
container_volume | 31 |
creator | Patrick, Ellis Buckley, Michael Müller, Samuel Lin, David M Yang, Jean Y H |
description | In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.
We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature.
This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages.
jean.yang@sydney.edu.au
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btv220 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4635654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722174901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSNERUvhEUBesgn1T_yTDVJVtVCpohKCteU44xuXGzvYTqEv0Wcm0S1XLauuZqT5zpmxdarqHcEfCW7ZSeejDy6m0RRv80lXbinFL6ojwoSsG0XIy32P2WH1OucbjDHHXLyqDilvCRYtP6ruL4ODlHzYoN4UU-cJrHfeotHbFOtvX0-Rm4MtPgZUhhTnzbBUQDfL9oKSCT9XaXSPeBN6NJky_DZ3GbkUR7TcaAfo_2M2EADBnylBzqv9uv9NdeDMNsPbh3pc_bg4_372pb66_nx5dnpV20bKUjeYWeqEwBIrg7njklrbd1YCdT3mBnoJgqtOOqlU22EAJRVTnemElURxdlx92vlOczdCbyGUZLZ6Sn406U5H4_XTSfCD3sRb3QjGBW8Wgw8PBin-miEXPfpsYbs1AeKcNZGccUJIS5-BUkpk02LyDBRLzhtCVle-Q5cvzTmB2x9PsF4Top8mRO8SsujeP375XvUvEuwvc76_pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707554112</pqid></control><display><type>article</type><title>Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data</title><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Patrick, Ellis ; Buckley, Michael ; Müller, Samuel ; Lin, David M ; Yang, Jean Y H</creator><creatorcontrib>Patrick, Ellis ; Buckley, Michael ; Müller, Samuel ; Lin, David M ; Yang, Jean Y H</creatorcontrib><description>In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.
We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature.
This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages.
jean.yang@sydney.edu.au
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv220</identifier><identifier>PMID: 25910695</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bioinformatics ; Computational Biology - methods ; Control ; Databases, Factual ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Online ; Original Papers ; Packages ; Pathways ; Ranking ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Software</subject><ispartof>Bioinformatics, 2015-09, Vol.31 (17), p.2822-2828</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853</citedby><cites>FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635654/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635654/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Buckley, Michael</creatorcontrib><creatorcontrib>Müller, Samuel</creatorcontrib><creatorcontrib>Lin, David M</creatorcontrib><creatorcontrib>Yang, Jean Y H</creatorcontrib><title>Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.
We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature.
This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages.
jean.yang@sydney.edu.au
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Control</subject><subject>Databases, Factual</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Online</subject><subject>Original Papers</subject><subject>Packages</subject><subject>Pathways</subject><subject>Ranking</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1TAQhSNERUvhEUBesgn1T_yTDVJVtVCpohKCteU44xuXGzvYTqEv0Wcm0S1XLauuZqT5zpmxdarqHcEfCW7ZSeejDy6m0RRv80lXbinFL6ojwoSsG0XIy32P2WH1OucbjDHHXLyqDilvCRYtP6ruL4ODlHzYoN4UU-cJrHfeotHbFOtvX0-Rm4MtPgZUhhTnzbBUQDfL9oKSCT9XaXSPeBN6NJky_DZ3GbkUR7TcaAfo_2M2EADBnylBzqv9uv9NdeDMNsPbh3pc_bg4_372pb66_nx5dnpV20bKUjeYWeqEwBIrg7njklrbd1YCdT3mBnoJgqtOOqlU22EAJRVTnemElURxdlx92vlOczdCbyGUZLZ6Sn406U5H4_XTSfCD3sRb3QjGBW8Wgw8PBin-miEXPfpsYbs1AeKcNZGccUJIS5-BUkpk02LyDBRLzhtCVle-Q5cvzTmB2x9PsF4Top8mRO8SsujeP375XvUvEuwvc76_pg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Patrick, Ellis</creator><creator>Buckley, Michael</creator><creator>Müller, Samuel</creator><creator>Lin, David M</creator><creator>Yang, Jean Y H</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data</title><author>Patrick, Ellis ; Buckley, Michael ; Müller, Samuel ; Lin, David M ; Yang, Jean Y H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Control</topic><topic>Databases, Factual</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Online</topic><topic>Original Papers</topic><topic>Packages</topic><topic>Pathways</topic><topic>Ranking</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Buckley, Michael</creatorcontrib><creatorcontrib>Müller, Samuel</creatorcontrib><creatorcontrib>Lin, David M</creatorcontrib><creatorcontrib>Yang, Jean Y H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, Ellis</au><au>Buckley, Michael</au><au>Müller, Samuel</au><au>Lin, David M</au><au>Yang, Jean Y H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>31</volume><issue>17</issue><spage>2822</spage><epage>2828</epage><pages>2822-2828</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.
We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature.
This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages.
jean.yang@sydney.edu.au
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25910695</pmid><doi>10.1093/bioinformatics/btv220</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2015-09, Vol.31 (17), p.2822-2828 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4635654 |
source | PubMed Central; Oxford Open Access Journals |
subjects | Algorithms Bioinformatics Computational Biology - methods Control Databases, Factual Gene expression Gene Expression Profiling - methods Gene Expression Regulation Gene Regulatory Networks Humans MicroRNAs - genetics MicroRNAs - metabolism Online Original Papers Packages Pathways Ranking RNA, Messenger - genetics RNA, Messenger - metabolism Software |
title | Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20data-specific%20micro-RNA%20function%20through%20the%20joint%20ranking%20of%20micro-RNA%20and%20pathways%20from%20matched%20micro-RNA%20and%20gene%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Patrick,%20Ellis&rft.date=2015-09-01&rft.volume=31&rft.issue=17&rft.spage=2822&rft.epage=2828&rft.pages=2822-2828&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv220&rft_dat=%3Cproquest_pubme%3E1722174901%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-403c2f660708a05f572ccdbc7e2fd05aed7e658b7f7889b0ee87838bab6c71853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1707554112&rft_id=info:pmid/25910695&rfr_iscdi=true |