Loading…

Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show t...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-10, Vol.6 (1), p.8769-8769, Article 8769
Main Authors: Kim, Tae Woo, Ping, Yuan, Galli, Giulia A., Choi, Kyoung-Shin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53
cites cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53
container_end_page 8769
container_issue 1
container_start_page 8769
container_title Nature communications
container_volume 6
creator Kim, Tae Woo
Ping, Yuan
Galli, Giulia A.
Choi, Kyoung-Shin
description n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO 4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge. Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.
doi_str_mv 10.1038/ncomms9769
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3846838691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</originalsourceid><addsrcrecordid>eNplkV9L3TAYxsPYmKLe7ANIwBtRjiZp2iQ3gsh0A2EX6nVIk_Q00iZdkipe7Lsvh6o72wIhD7y_PO8_AL5gdIZRxc-9DuOYBGvEB7BLEMUrzEj1cUvvgIOUHlE5lcCc0s9ghzRUcMHpLvh158Z5yMrbMCdofa-8tqP1OUHn4dSHHDxUbQpxym4jvYG6V3FtYY7KpynEDEMHW5fGOffwSXllVLbLV-WDsQl2IcIUBhXhcwkVPQ0uZ-fX--BTp4ZkD17fPfBw_fX-6tvq9sfN96vL25WuEc8rYQw3ivOa6aoo0yJOO90g1pKGCFLrjre1JsSgmjCCMbYtqztEGaek4HW1By4W32luR2t06S-qQU7RjSq-yKCc_DviXS_X4UnShiJMq2Jw_GoQw8_ZpixHl7QdhmVwssyZCUFpwwp69A_6GOboS3sbqmGiKbdQJwulY0gp2u69GIzkZrHyz2ILfLhd_jv6tsYCnC5AKiG_tnEr5_92vwGUpbIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726796679</pqid></control><display><type>article</type><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</creator><creatorcontrib>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</creatorcontrib><description>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO 4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge. Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9769</identifier><identifier>PMID: 26498984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/299/946 ; 639/638/439 ; 639/638/440 ; Annealing ; Electrodes ; Electrons ; Humanities and Social Sciences ; Hydrogen ; multidisciplinary ; Nitrogen ; Oxidation ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8769-8769, Article 8769</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</citedby><cites>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1726796679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1726796679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26498984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Galli, Giulia A.</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO 4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge. Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</description><subject>119/118</subject><subject>639/301/299/946</subject><subject>639/638/439</subject><subject>639/638/440</subject><subject>Annealing</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>multidisciplinary</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9L3TAYxsPYmKLe7ANIwBtRjiZp2iQ3gsh0A2EX6nVIk_Q00iZdkipe7Lsvh6o72wIhD7y_PO8_AL5gdIZRxc-9DuOYBGvEB7BLEMUrzEj1cUvvgIOUHlE5lcCc0s9ghzRUcMHpLvh158Z5yMrbMCdofa-8tqP1OUHn4dSHHDxUbQpxym4jvYG6V3FtYY7KpynEDEMHW5fGOffwSXllVLbLV-WDsQl2IcIUBhXhcwkVPQ0uZ-fX--BTp4ZkD17fPfBw_fX-6tvq9sfN96vL25WuEc8rYQw3ivOa6aoo0yJOO90g1pKGCFLrjre1JsSgmjCCMbYtqztEGaek4HW1By4W32luR2t06S-qQU7RjSq-yKCc_DviXS_X4UnShiJMq2Jw_GoQw8_ZpixHl7QdhmVwssyZCUFpwwp69A_6GOboS3sbqmGiKbdQJwulY0gp2u69GIzkZrHyz2ILfLhd_jv6tsYCnC5AKiG_tnEr5_92vwGUpbIL</recordid><startdate>20151026</startdate><enddate>20151026</enddate><creator>Kim, Tae Woo</creator><creator>Ping, Yuan</creator><creator>Galli, Giulia A.</creator><creator>Choi, Kyoung-Shin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151026</creationdate><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><author>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>639/301/299/946</topic><topic>639/638/439</topic><topic>639/638/440</topic><topic>Annealing</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>multidisciplinary</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Galli, Giulia A.</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Woo</au><au>Ping, Yuan</au><au>Galli, Giulia A.</au><au>Choi, Kyoung-Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-26</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8769</spage><epage>8769</epage><pages>8769-8769</pages><artnum>8769</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO 4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge. Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26498984</pmid><doi>10.1038/ncomms9769</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-10, Vol.6 (1), p.8769-8769, Article 8769
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640143
source Publicly Available Content Database; PMC (PubMed Central); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/301/299/946
639/638/439
639/638/440
Annealing
Electrodes
Electrons
Humanities and Social Sciences
Hydrogen
multidisciplinary
Nitrogen
Oxidation
Science
Science (multidisciplinary)
title Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20enhancements%20in%20photon%20absorption%20and%20charge%20transport%20of%20bismuth%20vanadate%20photoanodes%20for%20solar%20water%20splitting&rft.jtitle=Nature%20communications&rft.au=Kim,%20Tae%20Woo&rft.date=2015-10-26&rft.volume=6&rft.issue=1&rft.spage=8769&rft.epage=8769&rft.pages=8769-8769&rft.artnum=8769&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9769&rft_dat=%3Cproquest_pubme%3E3846838691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1726796679&rft_id=info:pmid/26498984&rfr_iscdi=true