Loading…
Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show t...
Saved in:
Published in: | Nature communications 2015-10, Vol.6 (1), p.8769-8769, Article 8769 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53 |
container_end_page | 8769 |
container_issue | 1 |
container_start_page | 8769 |
container_title | Nature communications |
container_volume | 6 |
creator | Kim, Tae Woo Ping, Yuan Galli, Giulia A. Choi, Kyoung-Shin |
description | n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO
4
is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by
ab initio
calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO
4
for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.
Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport. |
doi_str_mv | 10.1038/ncomms9769 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3846838691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</originalsourceid><addsrcrecordid>eNplkV9L3TAYxsPYmKLe7ANIwBtRjiZp2iQ3gsh0A2EX6nVIk_Q00iZdkipe7Lsvh6o72wIhD7y_PO8_AL5gdIZRxc-9DuOYBGvEB7BLEMUrzEj1cUvvgIOUHlE5lcCc0s9ghzRUcMHpLvh158Z5yMrbMCdofa-8tqP1OUHn4dSHHDxUbQpxym4jvYG6V3FtYY7KpynEDEMHW5fGOffwSXllVLbLV-WDsQl2IcIUBhXhcwkVPQ0uZ-fX--BTp4ZkD17fPfBw_fX-6tvq9sfN96vL25WuEc8rYQw3ivOa6aoo0yJOO90g1pKGCFLrjre1JsSgmjCCMbYtqztEGaek4HW1By4W32luR2t06S-qQU7RjSq-yKCc_DviXS_X4UnShiJMq2Jw_GoQw8_ZpixHl7QdhmVwssyZCUFpwwp69A_6GOboS3sbqmGiKbdQJwulY0gp2u69GIzkZrHyz2ILfLhd_jv6tsYCnC5AKiG_tnEr5_92vwGUpbIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726796679</pqid></control><display><type>article</type><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</creator><creatorcontrib>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</creatorcontrib><description>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO
4
is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by
ab initio
calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO
4
for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.
Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9769</identifier><identifier>PMID: 26498984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/299/946 ; 639/638/439 ; 639/638/440 ; Annealing ; Electrodes ; Electrons ; Humanities and Social Sciences ; Hydrogen ; multidisciplinary ; Nitrogen ; Oxidation ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8769-8769, Article 8769</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</citedby><cites>FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1726796679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1726796679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26498984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Galli, Giulia A.</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO
4
is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by
ab initio
calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO
4
for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.
Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</description><subject>119/118</subject><subject>639/301/299/946</subject><subject>639/638/439</subject><subject>639/638/440</subject><subject>Annealing</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>multidisciplinary</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9L3TAYxsPYmKLe7ANIwBtRjiZp2iQ3gsh0A2EX6nVIk_Q00iZdkipe7Lsvh6o72wIhD7y_PO8_AL5gdIZRxc-9DuOYBGvEB7BLEMUrzEj1cUvvgIOUHlE5lcCc0s9ghzRUcMHpLvh158Z5yMrbMCdofa-8tqP1OUHn4dSHHDxUbQpxym4jvYG6V3FtYY7KpynEDEMHW5fGOffwSXllVLbLV-WDsQl2IcIUBhXhcwkVPQ0uZ-fX--BTp4ZkD17fPfBw_fX-6tvq9sfN96vL25WuEc8rYQw3ivOa6aoo0yJOO90g1pKGCFLrjre1JsSgmjCCMbYtqztEGaek4HW1By4W32luR2t06S-qQU7RjSq-yKCc_DviXS_X4UnShiJMq2Jw_GoQw8_ZpixHl7QdhmVwssyZCUFpwwp69A_6GOboS3sbqmGiKbdQJwulY0gp2u69GIzkZrHyz2ILfLhd_jv6tsYCnC5AKiG_tnEr5_92vwGUpbIL</recordid><startdate>20151026</startdate><enddate>20151026</enddate><creator>Kim, Tae Woo</creator><creator>Ping, Yuan</creator><creator>Galli, Giulia A.</creator><creator>Choi, Kyoung-Shin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151026</creationdate><title>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</title><author>Kim, Tae Woo ; Ping, Yuan ; Galli, Giulia A. ; Choi, Kyoung-Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>639/301/299/946</topic><topic>639/638/439</topic><topic>639/638/440</topic><topic>Annealing</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>multidisciplinary</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Galli, Giulia A.</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Woo</au><au>Ping, Yuan</au><au>Galli, Giulia A.</au><au>Choi, Kyoung-Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-26</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8769</spage><epage>8769</epage><pages>8769-8769</pages><artnum>8769</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO
4
is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by
ab initio
calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO
4
for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.
Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26498984</pmid><doi>10.1038/ncomms9769</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-10, Vol.6 (1), p.8769-8769, Article 8769 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640143 |
source | Publicly Available Content Database; PMC (PubMed Central); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 639/301/299/946 639/638/439 639/638/440 Annealing Electrodes Electrons Humanities and Social Sciences Hydrogen multidisciplinary Nitrogen Oxidation Science Science (multidisciplinary) |
title | Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20enhancements%20in%20photon%20absorption%20and%20charge%20transport%20of%20bismuth%20vanadate%20photoanodes%20for%20solar%20water%20splitting&rft.jtitle=Nature%20communications&rft.au=Kim,%20Tae%20Woo&rft.date=2015-10-26&rft.volume=6&rft.issue=1&rft.spage=8769&rft.epage=8769&rft.pages=8769-8769&rft.artnum=8769&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9769&rft_dat=%3Cproquest_pubme%3E3846838691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-9dd8da8857c3d8ddb084fc607b262925cf8b5c22d05272111eb75f0478428dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1726796679&rft_id=info:pmid/26498984&rfr_iscdi=true |