Loading…

Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings

We investigated the surface photovoltage (SPV) behaviors of ZnO/Ag one-dimensional (1D) nanogratings using Kelvin probe force microscopy (KPFM). The grating structure could couple surface plasmon polaritons (SPPs) with photons, giving rise to strong light confinement at the ZnO/Ag interface. The lar...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-11, Vol.5 (1), p.16727-16727, Article 16727
Main Authors: Gwon, Minji, Sohn, Ahrum, Cho, Yunae, Phark, Soo-Hyon, Ko, Jieun, Sang Kim, Youn, Kim, Dong-Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the surface photovoltage (SPV) behaviors of ZnO/Ag one-dimensional (1D) nanogratings using Kelvin probe force microscopy (KPFM). The grating structure could couple surface plasmon polaritons (SPPs) with photons, giving rise to strong light confinement at the ZnO/Ag interface. The larger field produced more photo-excited carriers and increased the SPV. SPP excitation influenced the spatial distribution of the photo-excited carriers and their recombination processes. As a result, the SPV relaxation time clearly depended on the wavelength and polarization of the incident light. All of these results suggested that SPV measurement using KPFM should be very useful for studying the plasmonic effects in nanoscale metal/semiconductor hybrid structures.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep16727