Loading…

Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy

Autophagy is a critical pathway leading to lysosomal degradation of cellular components in response to changes in nutrient availability. Autophagy includes the biogenesis of autophagosomes and their sequential maturation through fusion with endo-lysosomes. The class III PI3 kinase Vps34 and its prod...

Full description

Saved in:
Bibliographic Details
Published in:Cell communication and signaling 2015-11, Vol.13 (1), p.44-44, Article 44
Main Author: Yoon, Mee-Sup
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autophagy is a critical pathway leading to lysosomal degradation of cellular components in response to changes in nutrient availability. Autophagy includes the biogenesis of autophagosomes and their sequential maturation through fusion with endo-lysosomes. The class III PI3 kinase Vps34 and its product phosphatidylinositol-3-phosphate (PI(3)P) play a critical role in this process, and enable the amino acid-mediated activation of mammalian target of rapamycin (mTOR), a suppressor of autophagy. Recent studies have shown that phospholipase PLD1, a downstream regulator of Vps34, is also closely involved in both mTOR activation and autophagy. This mini review summarizes recent findings in the regulation of Vps34 and PLD1 and highlights the role of these lipid-metabolizing enzymes in both mTOR activation and autophagy.
ISSN:1478-811X
1478-811X
DOI:10.1186/s12964-015-0122-x