Loading…
MicroRNA–mRNA interactions underlying colorectal cancer molecular subtypes
Colorectal cancer (CRC) transcriptional subtypes have been recently identified by gene expression profiling. Here we describe an analytical pipeline, microRNA master regulator analysis (MMRA), developed to search for microRNAs potentially driving CRC subtypes. Starting from a microRNA–mRNA tumour ex...
Saved in:
Published in: | Nature communications 2015-11, Vol.6 (1), p.8878-8878, Article 8878 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colorectal cancer (CRC) transcriptional subtypes have been recently identified by gene expression profiling. Here we describe an analytical pipeline, microRNA master regulator analysis (MMRA), developed to search for microRNAs potentially driving CRC subtypes. Starting from a microRNA–mRNA tumour expression data set, MMRA identifies candidate regulator microRNAs by assessing their subtype-specific expression, target enrichment in subtype mRNA signatures and network analysis-based contribution to subtype gene expression. When applied to a CRC data set of 450 samples, assigned to subtypes by 3 different transcriptional classifiers, MMRA identifies 24 candidate microRNAs, in most cases downregulated in the stem/serrated/mesenchymal (SSM) poor prognosis subtype. Functional validation in CRC cell lines confirms downregulation of the SSM subtype by miR-194, miR-200b, miR-203 and miR-429, which share target genes and pathways mediating this effect. These results show that, by combining statistical tests, target prediction and network analysis, MMRA effectively identifies microRNAs functionally associated to cancer subtypes.
Colorectal cancer subtypes can be distinguished by their different biological and molecular properties. Here the authors present microRNA Master Regulator Analysis, a tool to identify microRNAs driving subtype-specific gene expression and cancer variation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9878 |