Loading…
MicroRNA-29b is a Therapeutic Target in Cerebral Ischemia Associated with Aquaporin 4
MicroRNA-29b (miR-29b) is involved in regulating ischemia process, but the molecular mechanism is unclear. In this work, we explored the function of miR-29b in cerebral ischemia. The level of miR-29b in white blood cells was evaluated in patients and mice after ischemic stroke. Brain infarct volume...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2015-12, Vol.35 (12), p.1977-1984 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MicroRNA-29b (miR-29b) is involved in regulating ischemia process, but the molecular mechanism is unclear. In this work, we explored the function of miR-29b in cerebral ischemia. The level of miR-29b in white blood cells was evaluated in patients and mice after ischemic stroke. Brain infarct volume and National Institute of Health stroke scale (NIHSS) scores were analyzed to determine the relationship between miR-29b expression and the severity of stroke. The relationship of miR-29b and aquaporin-4 (AQP4) was further studied in mice. We found that miR-29b was significantly downregulated in stroke patients (P < 0.05). MiR-29b level negatively associated with NIHSS scores (r = −0.349, P < 0.01) and brain infarct volume (r = −0.321, P < 0.05). In ischemic mice, miR-29b in the brain and blood were both downregulated (r =0.723, P < 0.05). MiR-29b overexpression reduced infarct volume (49.50 ±6.55 versus 35.48 ±2.28 mm3, P < 0.05), edema (164±4% versus 108±4%, P < 0.05), and blood-brain barrier (BBB) disruption compared with controls (15 ±9% versus 7 ±3%, P < 0.05). Aquaporin-4 expression greatly decreased after miR-29b overexpression (28±7% versus 11 ±3%, P < 0.05). Dual-luciferase reporter system showed that AQP-4 was the direct target of miR-29b (P < 0.05). We concluded that miR-29b could potentially predict stroke outcomes as a novel circulating biomarker, and miR-29b overexpression reduced BBB disruption after ischemic stroke via downregulating AQP-4. |
---|---|
ISSN: | 0271-678X 1559-7016 |
DOI: | 10.1038/jcbfm.2015.156 |