Loading…
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects...
Saved in:
Published in: | Genetics (Austin) 2015-12, Vol.201 (4), p.1467-1478 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633 |
container_end_page | 1478 |
container_issue | 4 |
container_start_page | 1467 |
container_title | Genetics (Austin) |
container_volume | 201 |
creator | George, Anuja A Walworth, Nancy C |
description | Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted. |
doi_str_mv | 10.1534/genetics.115.181792 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4676536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3905664491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633</originalsourceid><addsrcrecordid>eNqNUl2L1DAULaK46-ovECTgiy8z5qNJGh-EcRw_YEVQ9zmk6e1MlzapSauO_8Z_6l1ndll9EgK55J5zcnJziuIxo0smRfl8CwGmzuclY3LJKqYNv1OcMlOKBVeC3b1VnxQPcr6klCojq_vFCVeSUV1Vp8WvTfZuBNKmOJAP3RRRkaxSgjy9IKtALgL8GMFP0JB1DAGrLgbyCqbvAAEJPsVpruceyOt9cAPaIS40ZDN2R3vkE2zn3v2hxZasIUx4FSTsrHdYYScQXJ_9rvsZs_N-5_B47yGTMQ41PCzuta7P8Oi4nxUXbzZf1u8W5x_fvl-vzhdeCj4ttOSOaW2Ug8YJb6hrOXe-5aYqlYfaNDU1jfNOU4MTUaqqqDOVYbJ2olVCnBUvD7rjXA_Q-Cujrrdj6gaX9ja6zv7dCd3ObuM3WyqtpFAo8OwokOLXGQdohy576HsXIM7ZMoQZwzmV_wEtteBGM47Qp_9AL-OcAk4CUZIZXaIiosQBhf-Rc4L2xjej9iot9jotFtNiD2lB1pPbT77hXMdD_AYANME4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751974220</pqid></control><display><type>article</type><title>Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe</title><source>Freely Accessible Science Journals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>George, Anuja A ; Walworth, Nancy C</creator><creatorcontrib>George, Anuja A ; Walworth, Nancy C</creatorcontrib><description>Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.115.181792</identifier><identifier>PMID: 26510788</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Cell division ; Centromere ; Chromatin ; Chromatin - physiology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Epigenesis, Genetic ; Epigenetics ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Investigations ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - physiology ; Microtubules - physiology ; Mitosis ; Mutation ; Schizosaccharomyces - genetics ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - physiology ; Yeast</subject><ispartof>Genetics (Austin), 2015-12, Vol.201 (4), p.1467-1478</ispartof><rights>Copyright © 2015 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Dec 2015</rights><rights>Copyright © 2015 by the Genetics Society of America 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633</citedby><cites>FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633</cites><orcidid>0000-0003-2643-6307 ; 0000-0001-5940-8236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26510788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Anuja A</creatorcontrib><creatorcontrib>Walworth, Nancy C</creatorcontrib><title>Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.</description><subject>Cell division</subject><subject>Centromere</subject><subject>Chromatin</subject><subject>Chromatin - physiology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Investigations</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - physiology</subject><subject>Microtubules - physiology</subject><subject>Mitosis</subject><subject>Mutation</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - physiology</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUl2L1DAULaK46-ovECTgiy8z5qNJGh-EcRw_YEVQ9zmk6e1MlzapSauO_8Z_6l1ndll9EgK55J5zcnJziuIxo0smRfl8CwGmzuclY3LJKqYNv1OcMlOKBVeC3b1VnxQPcr6klCojq_vFCVeSUV1Vp8WvTfZuBNKmOJAP3RRRkaxSgjy9IKtALgL8GMFP0JB1DAGrLgbyCqbvAAEJPsVpruceyOt9cAPaIS40ZDN2R3vkE2zn3v2hxZasIUx4FSTsrHdYYScQXJ_9rvsZs_N-5_B47yGTMQ41PCzuta7P8Oi4nxUXbzZf1u8W5x_fvl-vzhdeCj4ttOSOaW2Ug8YJb6hrOXe-5aYqlYfaNDU1jfNOU4MTUaqqqDOVYbJ2olVCnBUvD7rjXA_Q-Cujrrdj6gaX9ja6zv7dCd3ObuM3WyqtpFAo8OwokOLXGQdohy576HsXIM7ZMoQZwzmV_wEtteBGM47Qp_9AL-OcAk4CUZIZXaIiosQBhf-Rc4L2xjej9iot9jotFtNiD2lB1pPbT77hXMdD_AYANME4</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>George, Anuja A</creator><creator>Walworth, Nancy C</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2643-6307</orcidid><orcidid>https://orcid.org/0000-0001-5940-8236</orcidid></search><sort><creationdate>20151201</creationdate><title>Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe</title><author>George, Anuja A ; Walworth, Nancy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell division</topic><topic>Centromere</topic><topic>Chromatin</topic><topic>Chromatin - physiology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Investigations</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - physiology</topic><topic>Microtubules - physiology</topic><topic>Mitosis</topic><topic>Mutation</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Anuja A</creatorcontrib><creatorcontrib>Walworth, Nancy C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Family Health Database (Proquest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Anuja A</au><au>Walworth, Nancy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>201</volume><issue>4</issue><spage>1467</spage><epage>1478</epage><pages>1467-1478</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>26510788</pmid><doi>10.1534/genetics.115.181792</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2643-6307</orcidid><orcidid>https://orcid.org/0000-0001-5940-8236</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2015-12, Vol.201 (4), p.1467-1478 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4676536 |
source | Freely Accessible Science Journals; Oxford Journals Online; Alma/SFX Local Collection |
subjects | Cell division Centromere Chromatin Chromatin - physiology DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology Epigenesis, Genetic Epigenetics Histone Deacetylases - genetics Histone Deacetylases - metabolism Investigations Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - physiology Microtubules - physiology Mitosis Mutation Schizosaccharomyces - genetics Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - physiology Yeast |
title | Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escape%20from%20Mitotic%20Arrest:%20An%20Unexpected%20Connection%20Between%20Microtubule%20Dynamics%20and%20Epigenetic%20Regulation%20of%20Centromeric%20Chromatin%20in%20Schizosaccharomyces%20pombe&rft.jtitle=Genetics%20(Austin)&rft.au=George,%20Anuja%20A&rft.date=2015-12-01&rft.volume=201&rft.issue=4&rft.spage=1467&rft.epage=1478&rft.pages=1467-1478&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.115.181792&rft_dat=%3Cproquest_pubme%3E3905664491%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-752a17796aeda3c90af22acf29846ceb9db09daca70963166880a98915ba3f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751974220&rft_id=info:pmid/26510788&rfr_iscdi=true |