Loading…
De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome
Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin...
Saved in:
Published in: | American journal of human genetics 2015-12, Vol.97 (6), p.904-913 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383 |
container_end_page | 913 |
container_issue | 6 |
container_start_page | 904 |
container_title | American journal of human genetics |
container_volume | 97 |
creator | Burrage, Lindsay C. Charng, Wu-Lin Eldomery, Mohammad K. Willer, Jason R. Davis, Erica E. Lugtenberg, Dorien Zhu, Wenmiao Leduc, Magalie S. Akdemir, Zeynep C. Azamian, Mahshid Zapata, Gladys Hernandez, Patricia P. Schoots, Jeroen de Munnik, Sonja A. Roepman, Ronald Pearring, Jillian N. Jhangiani, Shalini Katsanis, Nicholas Vissers, Lisenka E.L.M. Brunner, Han G. Beaudet, Arthur L. Rosenfeld, Jill A. Muzny, Donna M. Gibbs, Richard A. Eng, Christine M. Xia, Fan Lalani, Seema R. Lupski, James R. Bongers, Ernie M.H.F. Yang, Yaping |
description | Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. |
doi_str_mv | 10.1016/j.ajhg.2015.11.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4678788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929715004516</els_id><sourcerecordid>3902768711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCH-CALHHhkuCP2HEkhFS1UJC2BQk4W47tbF0l9mI7Xe2_x1WXFXDgNId55tXMPAC8xKjGCPO3h1od9tc1QZjVGNcI8UdggRltK84RewwWCCFSdaRrL8CzlA4IYSwQfQouCOe07QRaALe2cBeOAW62ux3czlllF3yCKzUnC5dzDilMaqzWYXJe-Qy_RjeFaJwa4fpWxcGlCS5TCtqpbA28dXkPt9bZWG1CHJ2H3-68iWGyz8GTQY3Jvrivl-DHxw_fV5-qqy-bz6vlVaUZJbnqcM8I7ilt9KANQWboDScCtU0rTKdFg5luTMNYz1tiS4taq5BhihvUEyroJXh_zr2Z-8kabX2OapQ3ZW8V72RQTv7d8W4vr8NRNrwVrTgFvLkPiOHnbFOWk0vajqPyNsxJ4rbhgneENgV9_Q96CHP05bxCMUwwEqQrFDlTOoaUoh0elsFInkzKgzyZlCeTEmNZTJahV3-e8TDyW10B3p0BW555LA-XSTvrtTUuWp2lCe5_-b8APDewMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751210829</pqid></control><display><type>article</type><title>De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>PubMed Central Free</source><creator>Burrage, Lindsay C. ; Charng, Wu-Lin ; Eldomery, Mohammad K. ; Willer, Jason R. ; Davis, Erica E. ; Lugtenberg, Dorien ; Zhu, Wenmiao ; Leduc, Magalie S. ; Akdemir, Zeynep C. ; Azamian, Mahshid ; Zapata, Gladys ; Hernandez, Patricia P. ; Schoots, Jeroen ; de Munnik, Sonja A. ; Roepman, Ronald ; Pearring, Jillian N. ; Jhangiani, Shalini ; Katsanis, Nicholas ; Vissers, Lisenka E.L.M. ; Brunner, Han G. ; Beaudet, Arthur L. ; Rosenfeld, Jill A. ; Muzny, Donna M. ; Gibbs, Richard A. ; Eng, Christine M. ; Xia, Fan ; Lalani, Seema R. ; Lupski, James R. ; Bongers, Ernie M.H.F. ; Yang, Yaping</creator><creatorcontrib>Burrage, Lindsay C. ; Charng, Wu-Lin ; Eldomery, Mohammad K. ; Willer, Jason R. ; Davis, Erica E. ; Lugtenberg, Dorien ; Zhu, Wenmiao ; Leduc, Magalie S. ; Akdemir, Zeynep C. ; Azamian, Mahshid ; Zapata, Gladys ; Hernandez, Patricia P. ; Schoots, Jeroen ; de Munnik, Sonja A. ; Roepman, Ronald ; Pearring, Jillian N. ; Jhangiani, Shalini ; Katsanis, Nicholas ; Vissers, Lisenka E.L.M. ; Brunner, Han G. ; Beaudet, Arthur L. ; Rosenfeld, Jill A. ; Muzny, Donna M. ; Gibbs, Richard A. ; Eng, Christine M. ; Xia, Fan ; Lalani, Seema R. ; Lupski, James R. ; Bongers, Ernie M.H.F. ; Yang, Yaping</creatorcontrib><description>Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2015.11.006</identifier><identifier>PMID: 26637980</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Amino Acid Sequence ; Base Sequence ; Cell cycle ; Cell Cycle - genetics ; Child, Preschool ; Congenital Microtia - genetics ; Congenital Microtia - metabolism ; Dwarfism ; Dwarfism - genetics ; Dwarfism - metabolism ; Dwarfism - pathology ; Exons ; Female ; Geminin - genetics ; Geminin - metabolism ; Gene Expression ; Genes ; Genes, Dominant ; Genetic disorders ; Growth Disorders - genetics ; Growth Disorders - metabolism ; Heterozygote ; High-Throughput Nucleotide Sequencing ; Humans ; Inheritance Patterns ; Male ; Micrognathism - genetics ; Micrognathism - metabolism ; Molecular Sequence Data ; Mutation ; Patella - abnormalities ; Patella - metabolism ; Pedigree ; Protein Stability ; Proteins ; Proteolysis ; RNA Splicing ; Sequence Alignment</subject><ispartof>American journal of human genetics, 2015-12, Vol.97 (6), p.904-913</ispartof><rights>2015 The American Society of Human Genetics</rights><rights>Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Dec 3, 2015</rights><rights>2015 by The American Society of Human Genetics. All rights reserved. 2015 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383</citedby><cites>FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678788/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678788/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26637980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burrage, Lindsay C.</creatorcontrib><creatorcontrib>Charng, Wu-Lin</creatorcontrib><creatorcontrib>Eldomery, Mohammad K.</creatorcontrib><creatorcontrib>Willer, Jason R.</creatorcontrib><creatorcontrib>Davis, Erica E.</creatorcontrib><creatorcontrib>Lugtenberg, Dorien</creatorcontrib><creatorcontrib>Zhu, Wenmiao</creatorcontrib><creatorcontrib>Leduc, Magalie S.</creatorcontrib><creatorcontrib>Akdemir, Zeynep C.</creatorcontrib><creatorcontrib>Azamian, Mahshid</creatorcontrib><creatorcontrib>Zapata, Gladys</creatorcontrib><creatorcontrib>Hernandez, Patricia P.</creatorcontrib><creatorcontrib>Schoots, Jeroen</creatorcontrib><creatorcontrib>de Munnik, Sonja A.</creatorcontrib><creatorcontrib>Roepman, Ronald</creatorcontrib><creatorcontrib>Pearring, Jillian N.</creatorcontrib><creatorcontrib>Jhangiani, Shalini</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Vissers, Lisenka E.L.M.</creatorcontrib><creatorcontrib>Brunner, Han G.</creatorcontrib><creatorcontrib>Beaudet, Arthur L.</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Muzny, Donna M.</creatorcontrib><creatorcontrib>Gibbs, Richard A.</creatorcontrib><creatorcontrib>Eng, Christine M.</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Lalani, Seema R.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Bongers, Ernie M.H.F.</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><title>De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.</description><subject>Adolescent</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Child, Preschool</subject><subject>Congenital Microtia - genetics</subject><subject>Congenital Microtia - metabolism</subject><subject>Dwarfism</subject><subject>Dwarfism - genetics</subject><subject>Dwarfism - metabolism</subject><subject>Dwarfism - pathology</subject><subject>Exons</subject><subject>Female</subject><subject>Geminin - genetics</subject><subject>Geminin - metabolism</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Dominant</subject><subject>Genetic disorders</subject><subject>Growth Disorders - genetics</subject><subject>Growth Disorders - metabolism</subject><subject>Heterozygote</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Inheritance Patterns</subject><subject>Male</subject><subject>Micrognathism - genetics</subject><subject>Micrognathism - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Patella - abnormalities</subject><subject>Patella - metabolism</subject><subject>Pedigree</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>RNA Splicing</subject><subject>Sequence Alignment</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi0EYsvCH-CALHHhkuCP2HEkhFS1UJC2BQk4W47tbF0l9mI7Xe2_x1WXFXDgNId55tXMPAC8xKjGCPO3h1od9tc1QZjVGNcI8UdggRltK84RewwWCCFSdaRrL8CzlA4IYSwQfQouCOe07QRaALe2cBeOAW62ux3czlllF3yCKzUnC5dzDilMaqzWYXJe-Qy_RjeFaJwa4fpWxcGlCS5TCtqpbA28dXkPt9bZWG1CHJ2H3-68iWGyz8GTQY3Jvrivl-DHxw_fV5-qqy-bz6vlVaUZJbnqcM8I7ilt9KANQWboDScCtU0rTKdFg5luTMNYz1tiS4taq5BhihvUEyroJXh_zr2Z-8kabX2OapQ3ZW8V72RQTv7d8W4vr8NRNrwVrTgFvLkPiOHnbFOWk0vajqPyNsxJ4rbhgneENgV9_Q96CHP05bxCMUwwEqQrFDlTOoaUoh0elsFInkzKgzyZlCeTEmNZTJahV3-e8TDyW10B3p0BW555LA-XSTvrtTUuWp2lCe5_-b8APDewMw</recordid><startdate>20151203</startdate><enddate>20151203</enddate><creator>Burrage, Lindsay C.</creator><creator>Charng, Wu-Lin</creator><creator>Eldomery, Mohammad K.</creator><creator>Willer, Jason R.</creator><creator>Davis, Erica E.</creator><creator>Lugtenberg, Dorien</creator><creator>Zhu, Wenmiao</creator><creator>Leduc, Magalie S.</creator><creator>Akdemir, Zeynep C.</creator><creator>Azamian, Mahshid</creator><creator>Zapata, Gladys</creator><creator>Hernandez, Patricia P.</creator><creator>Schoots, Jeroen</creator><creator>de Munnik, Sonja A.</creator><creator>Roepman, Ronald</creator><creator>Pearring, Jillian N.</creator><creator>Jhangiani, Shalini</creator><creator>Katsanis, Nicholas</creator><creator>Vissers, Lisenka E.L.M.</creator><creator>Brunner, Han G.</creator><creator>Beaudet, Arthur L.</creator><creator>Rosenfeld, Jill A.</creator><creator>Muzny, Donna M.</creator><creator>Gibbs, Richard A.</creator><creator>Eng, Christine M.</creator><creator>Xia, Fan</creator><creator>Lalani, Seema R.</creator><creator>Lupski, James R.</creator><creator>Bongers, Ernie M.H.F.</creator><creator>Yang, Yaping</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151203</creationdate><title>De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome</title><author>Burrage, Lindsay C. ; Charng, Wu-Lin ; Eldomery, Mohammad K. ; Willer, Jason R. ; Davis, Erica E. ; Lugtenberg, Dorien ; Zhu, Wenmiao ; Leduc, Magalie S. ; Akdemir, Zeynep C. ; Azamian, Mahshid ; Zapata, Gladys ; Hernandez, Patricia P. ; Schoots, Jeroen ; de Munnik, Sonja A. ; Roepman, Ronald ; Pearring, Jillian N. ; Jhangiani, Shalini ; Katsanis, Nicholas ; Vissers, Lisenka E.L.M. ; Brunner, Han G. ; Beaudet, Arthur L. ; Rosenfeld, Jill A. ; Muzny, Donna M. ; Gibbs, Richard A. ; Eng, Christine M. ; Xia, Fan ; Lalani, Seema R. ; Lupski, James R. ; Bongers, Ernie M.H.F. ; Yang, Yaping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Child, Preschool</topic><topic>Congenital Microtia - genetics</topic><topic>Congenital Microtia - metabolism</topic><topic>Dwarfism</topic><topic>Dwarfism - genetics</topic><topic>Dwarfism - metabolism</topic><topic>Dwarfism - pathology</topic><topic>Exons</topic><topic>Female</topic><topic>Geminin - genetics</topic><topic>Geminin - metabolism</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Dominant</topic><topic>Genetic disorders</topic><topic>Growth Disorders - genetics</topic><topic>Growth Disorders - metabolism</topic><topic>Heterozygote</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Inheritance Patterns</topic><topic>Male</topic><topic>Micrognathism - genetics</topic><topic>Micrognathism - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Patella - abnormalities</topic><topic>Patella - metabolism</topic><topic>Pedigree</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>RNA Splicing</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burrage, Lindsay C.</creatorcontrib><creatorcontrib>Charng, Wu-Lin</creatorcontrib><creatorcontrib>Eldomery, Mohammad K.</creatorcontrib><creatorcontrib>Willer, Jason R.</creatorcontrib><creatorcontrib>Davis, Erica E.</creatorcontrib><creatorcontrib>Lugtenberg, Dorien</creatorcontrib><creatorcontrib>Zhu, Wenmiao</creatorcontrib><creatorcontrib>Leduc, Magalie S.</creatorcontrib><creatorcontrib>Akdemir, Zeynep C.</creatorcontrib><creatorcontrib>Azamian, Mahshid</creatorcontrib><creatorcontrib>Zapata, Gladys</creatorcontrib><creatorcontrib>Hernandez, Patricia P.</creatorcontrib><creatorcontrib>Schoots, Jeroen</creatorcontrib><creatorcontrib>de Munnik, Sonja A.</creatorcontrib><creatorcontrib>Roepman, Ronald</creatorcontrib><creatorcontrib>Pearring, Jillian N.</creatorcontrib><creatorcontrib>Jhangiani, Shalini</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Vissers, Lisenka E.L.M.</creatorcontrib><creatorcontrib>Brunner, Han G.</creatorcontrib><creatorcontrib>Beaudet, Arthur L.</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Muzny, Donna M.</creatorcontrib><creatorcontrib>Gibbs, Richard A.</creatorcontrib><creatorcontrib>Eng, Christine M.</creatorcontrib><creatorcontrib>Xia, Fan</creatorcontrib><creatorcontrib>Lalani, Seema R.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Bongers, Ernie M.H.F.</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burrage, Lindsay C.</au><au>Charng, Wu-Lin</au><au>Eldomery, Mohammad K.</au><au>Willer, Jason R.</au><au>Davis, Erica E.</au><au>Lugtenberg, Dorien</au><au>Zhu, Wenmiao</au><au>Leduc, Magalie S.</au><au>Akdemir, Zeynep C.</au><au>Azamian, Mahshid</au><au>Zapata, Gladys</au><au>Hernandez, Patricia P.</au><au>Schoots, Jeroen</au><au>de Munnik, Sonja A.</au><au>Roepman, Ronald</au><au>Pearring, Jillian N.</au><au>Jhangiani, Shalini</au><au>Katsanis, Nicholas</au><au>Vissers, Lisenka E.L.M.</au><au>Brunner, Han G.</au><au>Beaudet, Arthur L.</au><au>Rosenfeld, Jill A.</au><au>Muzny, Donna M.</au><au>Gibbs, Richard A.</au><au>Eng, Christine M.</au><au>Xia, Fan</au><au>Lalani, Seema R.</au><au>Lupski, James R.</au><au>Bongers, Ernie M.H.F.</au><au>Yang, Yaping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2015-12-03</date><risdate>2015</risdate><volume>97</volume><issue>6</issue><spage>904</spage><epage>913</epage><pages>904-913</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26637980</pmid><doi>10.1016/j.ajhg.2015.11.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2015-12, Vol.97 (6), p.904-913 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4678788 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; PubMed Central Free |
subjects | Adolescent Amino Acid Sequence Base Sequence Cell cycle Cell Cycle - genetics Child, Preschool Congenital Microtia - genetics Congenital Microtia - metabolism Dwarfism Dwarfism - genetics Dwarfism - metabolism Dwarfism - pathology Exons Female Geminin - genetics Geminin - metabolism Gene Expression Genes Genes, Dominant Genetic disorders Growth Disorders - genetics Growth Disorders - metabolism Heterozygote High-Throughput Nucleotide Sequencing Humans Inheritance Patterns Male Micrognathism - genetics Micrognathism - metabolism Molecular Sequence Data Mutation Patella - abnormalities Patella - metabolism Pedigree Protein Stability Proteins Proteolysis RNA Splicing Sequence Alignment |
title | De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Novo%20GMNN%20Mutations%20Cause%20Autosomal-Dominant%20Primordial%20Dwarfism%20Associated%20with%20Meier-Gorlin%20Syndrome&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Burrage,%20Lindsay%C2%A0C.&rft.date=2015-12-03&rft.volume=97&rft.issue=6&rft.spage=904&rft.epage=913&rft.pages=904-913&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2015.11.006&rft_dat=%3Cproquest_pubme%3E3902768711%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-91b521b334cfcd20dfbd62807478d9c8415c4d455b672ed623eea0d5a6d0b2383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751210829&rft_id=info:pmid/26637980&rfr_iscdi=true |