Loading…
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them...
Saved in:
Published in: | Science advances 2015-11, Vol.1 (10), p.e1501015-e1501015 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643 |
container_end_page | e1501015 |
container_issue | 10 |
container_start_page | e1501015 |
container_title | Science advances |
container_volume | 1 |
creator | Klimov, Paul V Falk, Abram L Christle, David J Dobrovitski, Viatcheslav V Awschalom, David D |
description | Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. |
doi_str_mv | 10.1126/sciadv.1501015 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751995800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643</originalsourceid><addsrcrecordid>eNpVUU1r3DAQFaUhWZJccyymp1681bfsS6EsbRIIlEByFmN5nKjY0taSF_rvq2U3SwqCeTBPb2beI-SG0TVjXH9NzkO_WzNFGWXqA1lxYVTNlWw-vsMX5Dql35RSJrVWrD0nF1wbyqWUK_L8uEDIy1RhyBBeRpwKqKC8qfN76GLoffYxpMqHCqoJ3ByTi1vvqhRH39cpQ8YqbUsbQ8KpG_GKnA0wJrw-1kvy_PPH0-aufvh1e7_5_lA72Yhctw6x6U0_DJQL6QAGB7xXxtGuoUyj5p3hoDmIxhmphTG0ZbRhWnSDbrUUl-TbQXe7dBP2riw8w2i3s59g_msjePt_J_hX-xJ3VuqGCaGKwOeDQEzZ2-JnRvdaTg7osmWaq1axQvpynDLHPwumbCefHI4jBIxLsswUV1vVUFqo6wN1b1KacTjtwqjdZ2YPmdljZuXDp_cXnOhvCYl_2i-UfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751995800</pqid></control><display><type>article</type><title>Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble</title><source>American Association for the Advancement of Science</source><source>PubMed (Medline)</source><creator>Klimov, Paul V ; Falk, Abram L ; Christle, David J ; Dobrovitski, Viatcheslav V ; Awschalom, David D</creator><creatorcontrib>Klimov, Paul V ; Falk, Abram L ; Christle, David J ; Dobrovitski, Viatcheslav V ; Awschalom, David D ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1501015</identifier><identifier>PMID: 26702444</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Quantum Physics ; SciAdv r-articles ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2015-11, Vol.1 (10), p.e1501015-e1501015</ispartof><rights>Copyright © 2015, The Authors 2015 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643</citedby><cites>FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643</cites><orcidid>0000-0001-9338-3335 ; 0000-0002-5531-2891 ; 0000000193383335 ; 0000000255312891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26702444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1625951$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klimov, Paul V</creatorcontrib><creatorcontrib>Falk, Abram L</creatorcontrib><creatorcontrib>Christle, David J</creatorcontrib><creatorcontrib>Dobrovitski, Viatcheslav V</creatorcontrib><creatorcontrib>Awschalom, David D</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Quantum Physics</subject><subject>SciAdv r-articles</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVUU1r3DAQFaUhWZJccyymp1681bfsS6EsbRIIlEByFmN5nKjY0taSF_rvq2U3SwqCeTBPb2beI-SG0TVjXH9NzkO_WzNFGWXqA1lxYVTNlWw-vsMX5Dql35RSJrVWrD0nF1wbyqWUK_L8uEDIy1RhyBBeRpwKqKC8qfN76GLoffYxpMqHCqoJ3ByTi1vvqhRH39cpQ8YqbUsbQ8KpG_GKnA0wJrw-1kvy_PPH0-aufvh1e7_5_lA72Yhctw6x6U0_DJQL6QAGB7xXxtGuoUyj5p3hoDmIxhmphTG0ZbRhWnSDbrUUl-TbQXe7dBP2riw8w2i3s59g_msjePt_J_hX-xJ3VuqGCaGKwOeDQEzZ2-JnRvdaTg7osmWaq1axQvpynDLHPwumbCefHI4jBIxLsswUV1vVUFqo6wN1b1KacTjtwqjdZ2YPmdljZuXDp_cXnOhvCYl_2i-UfA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Klimov, Paul V</creator><creator>Falk, Abram L</creator><creator>Christle, David J</creator><creator>Dobrovitski, Viatcheslav V</creator><creator>Awschalom, David D</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9338-3335</orcidid><orcidid>https://orcid.org/0000-0002-5531-2891</orcidid><orcidid>https://orcid.org/0000000193383335</orcidid><orcidid>https://orcid.org/0000000255312891</orcidid></search><sort><creationdate>20151101</creationdate><title>Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble</title><author>Klimov, Paul V ; Falk, Abram L ; Christle, David J ; Dobrovitski, Viatcheslav V ; Awschalom, David D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Quantum Physics</topic><topic>SciAdv r-articles</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimov, Paul V</creatorcontrib><creatorcontrib>Falk, Abram L</creatorcontrib><creatorcontrib>Christle, David J</creatorcontrib><creatorcontrib>Dobrovitski, Viatcheslav V</creatorcontrib><creatorcontrib>Awschalom, David D</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimov, Paul V</au><au>Falk, Abram L</au><au>Christle, David J</au><au>Dobrovitski, Viatcheslav V</au><au>Awschalom, David D</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>1</volume><issue>10</issue><spage>e1501015</spage><epage>e1501015</epage><pages>e1501015-e1501015</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>26702444</pmid><doi>10.1126/sciadv.1501015</doi><orcidid>https://orcid.org/0000-0001-9338-3335</orcidid><orcidid>https://orcid.org/0000-0002-5531-2891</orcidid><orcidid>https://orcid.org/0000000193383335</orcidid><orcidid>https://orcid.org/0000000255312891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2015-11, Vol.1 (10), p.e1501015-e1501015 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681335 |
source | American Association for the Advancement of Science; PubMed (Medline) |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Quantum Physics SciAdv r-articles Science & Technology - Other Topics |
title | Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20entanglement%20at%20ambient%20conditions%20in%20a%20macroscopic%20solid-state%20spin%20ensemble&rft.jtitle=Science%20advances&rft.au=Klimov,%20Paul%20V&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2015-11-01&rft.volume=1&rft.issue=10&rft.spage=e1501015&rft.epage=e1501015&rft.pages=e1501015-e1501015&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1501015&rft_dat=%3Cproquest_pubme%3E1751995800%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-9cee8d7dff0234caafca2d57c0b8016e62b72a62a38c74637709108163bf69643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751995800&rft_id=info:pmid/26702444&rfr_iscdi=true |