Loading…
Heat content variability in the North Atlantic Ocean in ocean reanalyses
Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000 m. Three reanalyses and two observational data sets are compared. The net gain of 5 × 1022 J in the upper 2000 m is roughly 30% of the global ocean warming over th...
Saved in:
Published in: | Geophysical research letters 2015-04, Vol.42 (8), p.2901-2909 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000 m. Three reanalyses and two observational data sets are compared. The net gain of 5 × 1022 J in the upper 2000 m is roughly 30% of the global ocean warming over this period. Upper ocean heat content (OHC) is dominated in most regions by heat transport convergence without widespread changes in the potential temperature/salinity relation. The heat convergence is associated with sinking of midthermocline isopycnals, with maximum sinking occurring at potential densities σ0 = 26.4−27.3, which contain subtropical mode waters. Water masses lighter than σ0 = 27.3 accumulate heat by increasing their volume, while heavier waters lose heat by decreasing their volume. Spatially, the OHC trend is nonuniform: the low latitudes, 0–30°N are warming steadily while large multidecadal variability occurs at latitudes 30–65°N.
Key Points
Heat content change dominated by heat transport convergence
Due to widespread sinking trend of midthermocline isopycnals over 50+ years |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1002/2015GL063299 |