Loading…

Heat content variability in the North Atlantic Ocean in ocean reanalyses

Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000 m. Three reanalyses and two observational data sets are compared. The net gain of 5 × 1022 J in the upper 2000 m is roughly 30% of the global ocean warming over th...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2015-04, Vol.42 (8), p.2901-2909
Main Authors: Häkkinen, Sirpa, Rhines, Peter B., Worthen, Denise L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000 m. Three reanalyses and two observational data sets are compared. The net gain of 5 × 1022 J in the upper 2000 m is roughly 30% of the global ocean warming over this period. Upper ocean heat content (OHC) is dominated in most regions by heat transport convergence without widespread changes in the potential temperature/salinity relation. The heat convergence is associated with sinking of midthermocline isopycnals, with maximum sinking occurring at potential densities σ0 = 26.4−27.3, which contain subtropical mode waters. Water masses lighter than σ0 = 27.3 accumulate heat by increasing their volume, while heavier waters lose heat by decreasing their volume. Spatially, the OHC trend is nonuniform: the low latitudes, 0–30°N are warming steadily while large multidecadal variability occurs at latitudes 30–65°N. Key Points Heat content change dominated by heat transport convergence Due to widespread sinking trend of midthermocline isopycnals over 50+ years
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL063299