Loading…

Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-12, Vol.5 (1), p.18463-18463, Article 18463
Main Authors: Zhang, Yuping, Li, Tongtong, Chen, Qi, Zhang, Huiyun, O’Hara, John F., Abele, Ethan, Taylor, Antoinette J., Chen, Hou-Tong, Azad, Abul K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. It thus enables a promising way to design electrically tunable absorbers, which may contribute toward the realization of frequency selective detectors for sensing applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep18463