Loading…
Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases
Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (A...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (50), p.E6844-E6851 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33 |
container_end_page | E6851 |
container_issue | 50 |
container_start_page | E6844 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Caldara-Festin, Grace Jackson, David R. Barajas, Jesus F. Valentic, Timothy R. Patel, Avinash B. Aguilar, Stephanie Nguyen, MyChi Vo, Michael Khanna, Avinash Sasaki, Eita Liu, Hung-wen Tsai, Shiou-Chuan |
description | Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and didomain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides. |
doi_str_mv | 10.1073/pnas.1512976112 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466633</jstor_id><sourcerecordid>26466633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33</originalsourceid><addsrcrecordid>eNpdkU1v1DAYhC1ERbeFMyeQJS69pOvv2BckVBVYqRKHlrPlODabJRsH2wHl3-Owy9JyGn8878jjAeA1RtcY1XQ9DiZdY46JqgXG5BlYYaRwJZhCz8EKIVJXkhF2Di5S2iGEFJfoBTgnQlBcc7QC2_scJ5unaHpohhb6abC5C8Ofrenn1CUYPMy_Amy7qg170w3QxKLZJLe2s-2LJujLEczz6OBmA8fQz99d7loH0zzk7UK8BGfe9Mm9Ouol-Prx9uHmc3X35dPm5sNdZTllufKqMQI3TUNaZlthpCkhpBMO0cZ40krnFcfcSt5y5z1VvJFYeirLqm4aSi_B-4PvODV711o35JJNj7HbmzjrYDr99Gbotvpb-KmZkLVAvBhcHQ1i-DG5lPW-S9b1vRlcmJLGNVNKYclJQd_9h-7CFMu3LVQpBStOcKHWB8rGkFJ0_vQYjPTSol5a1P9aLBNvH2c48X9rKwA8AsvkyQ4TzZG-FZKxgrw5ILuUQ3xkwURxofQ37i2vow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751219521</pqid></control><display><type>article</type><title>Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Caldara-Festin, Grace ; Jackson, David R. ; Barajas, Jesus F. ; Valentic, Timothy R. ; Patel, Avinash B. ; Aguilar, Stephanie ; Nguyen, MyChi ; Vo, Michael ; Khanna, Avinash ; Sasaki, Eita ; Liu, Hung-wen ; Tsai, Shiou-Chuan</creator><creatorcontrib>Caldara-Festin, Grace ; Jackson, David R. ; Barajas, Jesus F. ; Valentic, Timothy R. ; Patel, Avinash B. ; Aguilar, Stephanie ; Nguyen, MyChi ; Vo, Michael ; Khanna, Avinash ; Sasaki, Eita ; Liu, Hung-wen ; Tsai, Shiou-Chuan</creatorcontrib><description>Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and didomain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1512976112</identifier><identifier>PMID: 26631750</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aromatase - chemistry ; Aromatase - genetics ; Aromatase - metabolism ; Biological activity ; Biological Sciences ; Biosynthesis ; Metabolites ; Models, Molecular ; Mutagenesis ; Natural products ; PNAS Plus ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Protein Conformation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6844-E6851</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33</citedby><cites>FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466633$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26631750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caldara-Festin, Grace</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><creatorcontrib>Barajas, Jesus F.</creatorcontrib><creatorcontrib>Valentic, Timothy R.</creatorcontrib><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Aguilar, Stephanie</creatorcontrib><creatorcontrib>Nguyen, MyChi</creatorcontrib><creatorcontrib>Vo, Michael</creatorcontrib><creatorcontrib>Khanna, Avinash</creatorcontrib><creatorcontrib>Sasaki, Eita</creatorcontrib><creatorcontrib>Liu, Hung-wen</creatorcontrib><creatorcontrib>Tsai, Shiou-Chuan</creatorcontrib><title>Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and didomain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.</description><subject>Aromatase - chemistry</subject><subject>Aromatase - genetics</subject><subject>Aromatase - metabolism</subject><subject>Biological activity</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Natural products</subject><subject>PNAS Plus</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Protein Conformation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAYhC1ERbeFMyeQJS69pOvv2BckVBVYqRKHlrPlODabJRsH2wHl3-Owy9JyGn8878jjAeA1RtcY1XQ9DiZdY46JqgXG5BlYYaRwJZhCz8EKIVJXkhF2Di5S2iGEFJfoBTgnQlBcc7QC2_scJ5unaHpohhb6abC5C8Ofrenn1CUYPMy_Amy7qg170w3QxKLZJLe2s-2LJujLEczz6OBmA8fQz99d7loH0zzk7UK8BGfe9Mm9Ouol-Prx9uHmc3X35dPm5sNdZTllufKqMQI3TUNaZlthpCkhpBMO0cZ40krnFcfcSt5y5z1VvJFYeirLqm4aSi_B-4PvODV711o35JJNj7HbmzjrYDr99Gbotvpb-KmZkLVAvBhcHQ1i-DG5lPW-S9b1vRlcmJLGNVNKYclJQd_9h-7CFMu3LVQpBStOcKHWB8rGkFJ0_vQYjPTSol5a1P9aLBNvH2c48X9rKwA8AsvkyQ4TzZG-FZKxgrw5ILuUQ3xkwURxofQ37i2vow</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Caldara-Festin, Grace</creator><creator>Jackson, David R.</creator><creator>Barajas, Jesus F.</creator><creator>Valentic, Timothy R.</creator><creator>Patel, Avinash B.</creator><creator>Aguilar, Stephanie</creator><creator>Nguyen, MyChi</creator><creator>Vo, Michael</creator><creator>Khanna, Avinash</creator><creator>Sasaki, Eita</creator><creator>Liu, Hung-wen</creator><creator>Tsai, Shiou-Chuan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases</title><author>Caldara-Festin, Grace ; Jackson, David R. ; Barajas, Jesus F. ; Valentic, Timothy R. ; Patel, Avinash B. ; Aguilar, Stephanie ; Nguyen, MyChi ; Vo, Michael ; Khanna, Avinash ; Sasaki, Eita ; Liu, Hung-wen ; Tsai, Shiou-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aromatase - chemistry</topic><topic>Aromatase - genetics</topic><topic>Aromatase - metabolism</topic><topic>Biological activity</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Natural products</topic><topic>PNAS Plus</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldara-Festin, Grace</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><creatorcontrib>Barajas, Jesus F.</creatorcontrib><creatorcontrib>Valentic, Timothy R.</creatorcontrib><creatorcontrib>Patel, Avinash B.</creatorcontrib><creatorcontrib>Aguilar, Stephanie</creatorcontrib><creatorcontrib>Nguyen, MyChi</creatorcontrib><creatorcontrib>Vo, Michael</creatorcontrib><creatorcontrib>Khanna, Avinash</creatorcontrib><creatorcontrib>Sasaki, Eita</creatorcontrib><creatorcontrib>Liu, Hung-wen</creatorcontrib><creatorcontrib>Tsai, Shiou-Chuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldara-Festin, Grace</au><au>Jackson, David R.</au><au>Barajas, Jesus F.</au><au>Valentic, Timothy R.</au><au>Patel, Avinash B.</au><au>Aguilar, Stephanie</au><au>Nguyen, MyChi</au><au>Vo, Michael</au><au>Khanna, Avinash</au><au>Sasaki, Eita</au><au>Liu, Hung-wen</au><au>Tsai, Shiou-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>112</volume><issue>50</issue><spage>E6844</spage><epage>E6851</epage><pages>E6844-E6851</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and didomain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26631750</pmid><doi>10.1073/pnas.1512976112</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6844-E6851 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687605 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Aromatase - chemistry Aromatase - genetics Aromatase - metabolism Biological activity Biological Sciences Biosynthesis Metabolites Models, Molecular Mutagenesis Natural products PNAS Plus Polyketide Synthases - chemistry Polyketide Synthases - genetics Polyketide Synthases - metabolism Protein Conformation |
title | Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20analysis%20of%20two%20di-domain%20aromatase/cyclases%20from%20type%20II%20polyketide%20synthases&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Caldara-Festin,%20Grace&rft.date=2015-12-15&rft.volume=112&rft.issue=50&rft.spage=E6844&rft.epage=E6851&rft.pages=E6844-E6851&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1512976112&rft_dat=%3Cjstor_pubme%3E26466633%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-f9ba61bbb2d4cd6a8a0028e6e03baf2d8ef9515c85d5eff395b818f383957bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751219521&rft_id=info:pmid/26631750&rft_jstor_id=26466633&rfr_iscdi=true |