Loading…
Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia
Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Meth...
Saved in:
Published in: | Annals of clinical and translational neurology 2015-11, Vol.2 (11), p.1012-1028 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533 |
---|---|
cites | cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533 |
container_end_page | 1028 |
container_issue | 11 |
container_start_page | 1012 |
container_title | Annals of clinical and translational neurology |
container_volume | 2 |
creator | Morris, Meaghan Sanchez, Pascal E. Verret, Laure Beagle, Alexander J. Guo, Weikun Dubal, Dena Ranasinghe, Kamalini G. Koyama, Akihiko Ho, Kaitlyn Yu, Gui‐Qiu Vossel, Keith A. Mucke, Lennart |
description | Objective
Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN.
Methods
To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB.
Results
We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power.
Interpretation
We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation. |
doi_str_mv | 10.1002/acn3.257 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4693622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754522689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhy0EolVbiRMgS2xgkdZ-_pdskEYjSpFGRULdW47jdFwSu8RJR9n1CL1KL8IhOAkeTSmlEivbz5-_Z_uH0BtKjikhcGJsYMcg1Au0DwzKohKEvXwy30NHKV0RQigFwRS8RnsgFQMJah99O3fjJg7fcTOndgp29DFgH_DP-1-3d2kOk-1cXo6DCenSBW9x763DJjR4PfUm4JXbzLiOzYwb17swenOIXrWmS-7oYTxAF6efLpZnxerr5y_LxaqwXIEq6prTtjTUSioMI5y3lZMKDKW1IE7WnBPHpWCkLhvHQbZSSgatMS0oIxg7QB932uup7l1jc-_BdPp68L0ZZh2N1__uBL_Wl_FGc1kxCZAFH3aC9bNjZ4uV3tYIMEm4ojc0s-8fmg3xx-TSqHufrOs6E1yckqZKcAEgyyqj756hV3EaQv4JDVBWEkpC-F-hHWJKg2sfb0CJ3saqt7HqHGtG3z596CP4J8QMFDtg4zs3_1ekF8tzthX-BliPrB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289628004</pqid></control><display><type>article</type><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</creator><creatorcontrib>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</creatorcontrib><description>Objective
Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN.
Methods
To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB.
Results
We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power.
Interpretation
We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</description><identifier>ISSN: 2328-9503</identifier><identifier>EISSN: 2328-9503</identifier><identifier>DOI: 10.1002/acn3.257</identifier><identifier>PMID: 26732627</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Alzheimer's disease ; Brain research ; Cognitive ability ; Convulsions & seizures ; Dementia ; Electroencephalography ; Grants ; Head injuries ; Hypotheses ; Life Sciences ; Neural networks ; Neurons and Cognition ; Parkinson's disease ; Pathology ; Patients ; Transgenic animals</subject><ispartof>Annals of clinical and translational neurology, 2015-11, Vol.2 (11), p.1012-1028</ispartof><rights>2015 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</citedby><cites>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</cites><orcidid>0000-0001-5272-6063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289628004/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289628004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26732627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02360471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Meaghan</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Verret, Laure</creatorcontrib><creatorcontrib>Beagle, Alexander J.</creatorcontrib><creatorcontrib>Guo, Weikun</creatorcontrib><creatorcontrib>Dubal, Dena</creatorcontrib><creatorcontrib>Ranasinghe, Kamalini G.</creatorcontrib><creatorcontrib>Koyama, Akihiko</creatorcontrib><creatorcontrib>Ho, Kaitlyn</creatorcontrib><creatorcontrib>Yu, Gui‐Qiu</creatorcontrib><creatorcontrib>Vossel, Keith A.</creatorcontrib><creatorcontrib>Mucke, Lennart</creatorcontrib><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><title>Annals of clinical and translational neurology</title><addtitle>Ann Clin Transl Neurol</addtitle><description>Objective
Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN.
Methods
To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB.
Results
We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power.
Interpretation
We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</description><subject>Alzheimer's disease</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Convulsions & seizures</subject><subject>Dementia</subject><subject>Electroencephalography</subject><subject>Grants</subject><subject>Head injuries</subject><subject>Hypotheses</subject><subject>Life Sciences</subject><subject>Neural networks</subject><subject>Neurons and Cognition</subject><subject>Parkinson's disease</subject><subject>Pathology</subject><subject>Patients</subject><subject>Transgenic animals</subject><issn>2328-9503</issn><issn>2328-9503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kU9u1DAUhy0EolVbiRMgS2xgkdZ-_pdskEYjSpFGRULdW47jdFwSu8RJR9n1CL1KL8IhOAkeTSmlEivbz5-_Z_uH0BtKjikhcGJsYMcg1Au0DwzKohKEvXwy30NHKV0RQigFwRS8RnsgFQMJah99O3fjJg7fcTOndgp29DFgH_DP-1-3d2kOk-1cXo6DCenSBW9x763DJjR4PfUm4JXbzLiOzYwb17swenOIXrWmS-7oYTxAF6efLpZnxerr5y_LxaqwXIEq6prTtjTUSioMI5y3lZMKDKW1IE7WnBPHpWCkLhvHQbZSSgatMS0oIxg7QB932uup7l1jc-_BdPp68L0ZZh2N1__uBL_Wl_FGc1kxCZAFH3aC9bNjZ4uV3tYIMEm4ojc0s-8fmg3xx-TSqHufrOs6E1yckqZKcAEgyyqj756hV3EaQv4JDVBWEkpC-F-hHWJKg2sfb0CJ3saqt7HqHGtG3z596CP4J8QMFDtg4zs3_1ekF8tzthX-BliPrB0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Morris, Meaghan</creator><creator>Sanchez, Pascal E.</creator><creator>Verret, Laure</creator><creator>Beagle, Alexander J.</creator><creator>Guo, Weikun</creator><creator>Dubal, Dena</creator><creator>Ranasinghe, Kamalini G.</creator><creator>Koyama, Akihiko</creator><creator>Ho, Kaitlyn</creator><creator>Yu, Gui‐Qiu</creator><creator>Vossel, Keith A.</creator><creator>Mucke, Lennart</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5272-6063</orcidid></search><sort><creationdate>201511</creationdate><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><author>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer's disease</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Convulsions & seizures</topic><topic>Dementia</topic><topic>Electroencephalography</topic><topic>Grants</topic><topic>Head injuries</topic><topic>Hypotheses</topic><topic>Life Sciences</topic><topic>Neural networks</topic><topic>Neurons and Cognition</topic><topic>Parkinson's disease</topic><topic>Pathology</topic><topic>Patients</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Meaghan</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Verret, Laure</creatorcontrib><creatorcontrib>Beagle, Alexander J.</creatorcontrib><creatorcontrib>Guo, Weikun</creatorcontrib><creatorcontrib>Dubal, Dena</creatorcontrib><creatorcontrib>Ranasinghe, Kamalini G.</creatorcontrib><creatorcontrib>Koyama, Akihiko</creatorcontrib><creatorcontrib>Ho, Kaitlyn</creatorcontrib><creatorcontrib>Yu, Gui‐Qiu</creatorcontrib><creatorcontrib>Vossel, Keith A.</creatorcontrib><creatorcontrib>Mucke, Lennart</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of clinical and translational neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Meaghan</au><au>Sanchez, Pascal E.</au><au>Verret, Laure</au><au>Beagle, Alexander J.</au><au>Guo, Weikun</au><au>Dubal, Dena</au><au>Ranasinghe, Kamalini G.</au><au>Koyama, Akihiko</au><au>Ho, Kaitlyn</au><au>Yu, Gui‐Qiu</au><au>Vossel, Keith A.</au><au>Mucke, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</atitle><jtitle>Annals of clinical and translational neurology</jtitle><addtitle>Ann Clin Transl Neurol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>2</volume><issue>11</issue><spage>1012</spage><epage>1028</epage><pages>1012-1028</pages><issn>2328-9503</issn><eissn>2328-9503</eissn><abstract>Objective
Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN.
Methods
To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB.
Results
We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power.
Interpretation
We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>26732627</pmid><doi>10.1002/acn3.257</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5272-6063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2328-9503 |
ispartof | Annals of clinical and translational neurology, 2015-11, Vol.2 (11), p.1012-1028 |
issn | 2328-9503 2328-9503 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4693622 |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | Alzheimer's disease Brain research Cognitive ability Convulsions & seizures Dementia Electroencephalography Grants Head injuries Hypotheses Life Sciences Neural networks Neurons and Cognition Parkinson's disease Pathology Patients Transgenic animals |
title | Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20dysfunction%20in%20%CE%B1%E2%80%90synuclein%20transgenic%20mice%20and%20human%20Lewy%20body%20dementia&rft.jtitle=Annals%20of%20clinical%20and%20translational%20neurology&rft.au=Morris,%20Meaghan&rft.date=2015-11&rft.volume=2&rft.issue=11&rft.spage=1012&rft.epage=1028&rft.pages=1012-1028&rft.issn=2328-9503&rft.eissn=2328-9503&rft_id=info:doi/10.1002/acn3.257&rft_dat=%3Cproquest_pubme%3E1754522689%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289628004&rft_id=info:pmid/26732627&rfr_iscdi=true |