Loading…

Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia

Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Meth...

Full description

Saved in:
Bibliographic Details
Published in:Annals of clinical and translational neurology 2015-11, Vol.2 (11), p.1012-1028
Main Authors: Morris, Meaghan, Sanchez, Pascal E., Verret, Laure, Beagle, Alexander J., Guo, Weikun, Dubal, Dena, Ranasinghe, Kamalini G., Koyama, Akihiko, Ho, Kaitlyn, Yu, Gui‐Qiu, Vossel, Keith A., Mucke, Lennart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533
cites cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533
container_end_page 1028
container_issue 11
container_start_page 1012
container_title Annals of clinical and translational neurology
container_volume 2
creator Morris, Meaghan
Sanchez, Pascal E.
Verret, Laure
Beagle, Alexander J.
Guo, Weikun
Dubal, Dena
Ranasinghe, Kamalini G.
Koyama, Akihiko
Ho, Kaitlyn
Yu, Gui‐Qiu
Vossel, Keith A.
Mucke, Lennart
description Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Methods To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. Results We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. Interpretation We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.
doi_str_mv 10.1002/acn3.257
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4693622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754522689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhy0EolVbiRMgS2xgkdZ-_pdskEYjSpFGRULdW47jdFwSu8RJR9n1CL1KL8IhOAkeTSmlEivbz5-_Z_uH0BtKjikhcGJsYMcg1Au0DwzKohKEvXwy30NHKV0RQigFwRS8RnsgFQMJah99O3fjJg7fcTOndgp29DFgH_DP-1-3d2kOk-1cXo6DCenSBW9x763DJjR4PfUm4JXbzLiOzYwb17swenOIXrWmS-7oYTxAF6efLpZnxerr5y_LxaqwXIEq6prTtjTUSioMI5y3lZMKDKW1IE7WnBPHpWCkLhvHQbZSSgatMS0oIxg7QB932uup7l1jc-_BdPp68L0ZZh2N1__uBL_Wl_FGc1kxCZAFH3aC9bNjZ4uV3tYIMEm4ojc0s-8fmg3xx-TSqHufrOs6E1yckqZKcAEgyyqj756hV3EaQv4JDVBWEkpC-F-hHWJKg2sfb0CJ3saqt7HqHGtG3z596CP4J8QMFDtg4zs3_1ekF8tzthX-BliPrB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289628004</pqid></control><display><type>article</type><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</creator><creatorcontrib>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</creatorcontrib><description>Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Methods To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. Results We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. Interpretation We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</description><identifier>ISSN: 2328-9503</identifier><identifier>EISSN: 2328-9503</identifier><identifier>DOI: 10.1002/acn3.257</identifier><identifier>PMID: 26732627</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer's disease ; Brain research ; Cognitive ability ; Convulsions &amp; seizures ; Dementia ; Electroencephalography ; Grants ; Head injuries ; Hypotheses ; Life Sciences ; Neural networks ; Neurons and Cognition ; Parkinson's disease ; Pathology ; Patients ; Transgenic animals</subject><ispartof>Annals of clinical and translational neurology, 2015-11, Vol.2 (11), p.1012-1028</ispartof><rights>2015 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</citedby><cites>FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</cites><orcidid>0000-0001-5272-6063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289628004/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289628004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26732627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02360471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Meaghan</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Verret, Laure</creatorcontrib><creatorcontrib>Beagle, Alexander J.</creatorcontrib><creatorcontrib>Guo, Weikun</creatorcontrib><creatorcontrib>Dubal, Dena</creatorcontrib><creatorcontrib>Ranasinghe, Kamalini G.</creatorcontrib><creatorcontrib>Koyama, Akihiko</creatorcontrib><creatorcontrib>Ho, Kaitlyn</creatorcontrib><creatorcontrib>Yu, Gui‐Qiu</creatorcontrib><creatorcontrib>Vossel, Keith A.</creatorcontrib><creatorcontrib>Mucke, Lennart</creatorcontrib><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><title>Annals of clinical and translational neurology</title><addtitle>Ann Clin Transl Neurol</addtitle><description>Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Methods To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. Results We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. Interpretation We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</description><subject>Alzheimer's disease</subject><subject>Brain research</subject><subject>Cognitive ability</subject><subject>Convulsions &amp; seizures</subject><subject>Dementia</subject><subject>Electroencephalography</subject><subject>Grants</subject><subject>Head injuries</subject><subject>Hypotheses</subject><subject>Life Sciences</subject><subject>Neural networks</subject><subject>Neurons and Cognition</subject><subject>Parkinson's disease</subject><subject>Pathology</subject><subject>Patients</subject><subject>Transgenic animals</subject><issn>2328-9503</issn><issn>2328-9503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kU9u1DAUhy0EolVbiRMgS2xgkdZ-_pdskEYjSpFGRULdW47jdFwSu8RJR9n1CL1KL8IhOAkeTSmlEivbz5-_Z_uH0BtKjikhcGJsYMcg1Au0DwzKohKEvXwy30NHKV0RQigFwRS8RnsgFQMJah99O3fjJg7fcTOndgp29DFgH_DP-1-3d2kOk-1cXo6DCenSBW9x763DJjR4PfUm4JXbzLiOzYwb17swenOIXrWmS-7oYTxAF6efLpZnxerr5y_LxaqwXIEq6prTtjTUSioMI5y3lZMKDKW1IE7WnBPHpWCkLhvHQbZSSgatMS0oIxg7QB932uup7l1jc-_BdPp68L0ZZh2N1__uBL_Wl_FGc1kxCZAFH3aC9bNjZ4uV3tYIMEm4ojc0s-8fmg3xx-TSqHufrOs6E1yckqZKcAEgyyqj756hV3EaQv4JDVBWEkpC-F-hHWJKg2sfb0CJ3saqt7HqHGtG3z596CP4J8QMFDtg4zs3_1ekF8tzthX-BliPrB0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Morris, Meaghan</creator><creator>Sanchez, Pascal E.</creator><creator>Verret, Laure</creator><creator>Beagle, Alexander J.</creator><creator>Guo, Weikun</creator><creator>Dubal, Dena</creator><creator>Ranasinghe, Kamalini G.</creator><creator>Koyama, Akihiko</creator><creator>Ho, Kaitlyn</creator><creator>Yu, Gui‐Qiu</creator><creator>Vossel, Keith A.</creator><creator>Mucke, Lennart</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5272-6063</orcidid></search><sort><creationdate>201511</creationdate><title>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</title><author>Morris, Meaghan ; Sanchez, Pascal E. ; Verret, Laure ; Beagle, Alexander J. ; Guo, Weikun ; Dubal, Dena ; Ranasinghe, Kamalini G. ; Koyama, Akihiko ; Ho, Kaitlyn ; Yu, Gui‐Qiu ; Vossel, Keith A. ; Mucke, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer's disease</topic><topic>Brain research</topic><topic>Cognitive ability</topic><topic>Convulsions &amp; seizures</topic><topic>Dementia</topic><topic>Electroencephalography</topic><topic>Grants</topic><topic>Head injuries</topic><topic>Hypotheses</topic><topic>Life Sciences</topic><topic>Neural networks</topic><topic>Neurons and Cognition</topic><topic>Parkinson's disease</topic><topic>Pathology</topic><topic>Patients</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Meaghan</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Verret, Laure</creatorcontrib><creatorcontrib>Beagle, Alexander J.</creatorcontrib><creatorcontrib>Guo, Weikun</creatorcontrib><creatorcontrib>Dubal, Dena</creatorcontrib><creatorcontrib>Ranasinghe, Kamalini G.</creatorcontrib><creatorcontrib>Koyama, Akihiko</creatorcontrib><creatorcontrib>Ho, Kaitlyn</creatorcontrib><creatorcontrib>Yu, Gui‐Qiu</creatorcontrib><creatorcontrib>Vossel, Keith A.</creatorcontrib><creatorcontrib>Mucke, Lennart</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of clinical and translational neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Meaghan</au><au>Sanchez, Pascal E.</au><au>Verret, Laure</au><au>Beagle, Alexander J.</au><au>Guo, Weikun</au><au>Dubal, Dena</au><au>Ranasinghe, Kamalini G.</au><au>Koyama, Akihiko</au><au>Ho, Kaitlyn</au><au>Yu, Gui‐Qiu</au><au>Vossel, Keith A.</au><au>Mucke, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia</atitle><jtitle>Annals of clinical and translational neurology</jtitle><addtitle>Ann Clin Transl Neurol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>2</volume><issue>11</issue><spage>1012</spage><epage>1028</epage><pages>1012-1028</pages><issn>2328-9503</issn><eissn>2328-9503</eissn><abstract>Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Methods To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. Results We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. Interpretation We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>26732627</pmid><doi>10.1002/acn3.257</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5272-6063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2328-9503
ispartof Annals of clinical and translational neurology, 2015-11, Vol.2 (11), p.1012-1028
issn 2328-9503
2328-9503
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4693622
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Alzheimer's disease
Brain research
Cognitive ability
Convulsions & seizures
Dementia
Electroencephalography
Grants
Head injuries
Hypotheses
Life Sciences
Neural networks
Neurons and Cognition
Parkinson's disease
Pathology
Patients
Transgenic animals
title Network dysfunction in α‐synuclein transgenic mice and human Lewy body dementia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20dysfunction%20in%20%CE%B1%E2%80%90synuclein%20transgenic%20mice%20and%20human%20Lewy%20body%20dementia&rft.jtitle=Annals%20of%20clinical%20and%20translational%20neurology&rft.au=Morris,%20Meaghan&rft.date=2015-11&rft.volume=2&rft.issue=11&rft.spage=1012&rft.epage=1028&rft.pages=1012-1028&rft.issn=2328-9503&rft.eissn=2328-9503&rft_id=info:doi/10.1002/acn3.257&rft_dat=%3Cproquest_pubme%3E1754522689%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4727-bb41f8a1c615a3044f9e672a11b50e6b440e46530b8de426f66632faaf27a533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289628004&rft_id=info:pmid/26732627&rfr_iscdi=true