Loading…

Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial cells

Nitration of both protein-bound and free tyrosine by reactive nitrogen species results in the formation of nitrotyrosine (NT). We previously reported that free NT impairs microtubule polymerization and uncouples endothelial nitric oxide synthase (eNOS) function in pulmonary artery endothelial cells...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology 2016-01, Vol.310 (1), p.C80-C88
Main Authors: Teng, Ru-Jeng, Wu, Tzong-Jin, Afolayan, Adeleye J, Konduri, Girija G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitration of both protein-bound and free tyrosine by reactive nitrogen species results in the formation of nitrotyrosine (NT). We previously reported that free NT impairs microtubule polymerization and uncouples endothelial nitric oxide synthase (eNOS) function in pulmonary artery endothelial cells (PAEC). Because microtubules modulate mitochondrial function, we hypothesized that increased NT levels during inflammation and oxidative stress will lead to mitochondrial dysfunction in PAEC. PAEC isolated from fetal lambs were exposed to varying concentrations of free NT. At low concentrations (1-10 μM), NT increased nitration of mitochondrial electron transport chain (ETC) protein subunit complexes I-V and state III oxygen consumption. Higher concentrations of NT (50 μM) caused decreased microtubule acetylation, impaired eNOS interactions with mitochondria, and decreased ETC protein levels. We also observed increases in heat shock protein-90 nitration, mitochondrial superoxide formation, and fragmentation of mitochondria in PAEC. Our data suggest that free NT accumulation may impair microtubule polymerization and exacerbate reactive oxygen species-induced cell damage by causing mitochondrial dysfunction.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00073.2015