Loading…

RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits

Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-01, Vol.6 (1), p.18668-18668, Article 18668
Main Authors: Yan, Li, Chen, Yaomin, Li, Wubo, Huang, Xiumei, Badie, Hedieh, Jian, Fan, Huang, Timothy, Zhao, Yingjun, Cohen, Stanley N., Li, Limin, Zhang, Yun-wu, Luo, Huanmin, Tu, Shichun, Xu, Huaxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3
cites cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3
container_end_page 18668
container_issue 1
container_start_page 18668
container_title Scientific reports
container_volume 6
creator Yan, Li
Chen, Yaomin
Li, Wubo
Huang, Xiumei
Badie, Hedieh
Jian, Fan
Huang, Timothy
Zhao, Yingjun
Cohen, Stanley N.
Li, Limin
Zhang, Yun-wu
Luo, Huanmin
Tu, Shichun
Xu, Huaxi
description Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of RPS23RG1 mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of Rps23rg1 in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.
doi_str_mv 10.1038/srep18668
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754525869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</originalsourceid><addsrcrecordid>eNptkNtKxDAQhoMoKuqFLyC9VKGaTA5tbwRZ1gMIiofrkKbpGukma9IK-1o-iM9kll0XBecmQ-bjn-FD6JDgM4JpeR6DmZFSiHID7QJmPAcKsPmr30EHMb7hVBwqRqpttAOioJQRsYvGjw9PQB-vSRZMM2gTs8uvz8x3duKnJuTWLT6bLM6dmvVWZ8o1mfYTZ3v7YbLGtFbbPu6jrVZ10Rys3j30cjV-Ht3kd_fXt6PLu1wzgvucAHDgDQjKGcecFRUQ3takLbXihOFaF4IAU6qqKXBVU1YxqnhrCIhGC0P30MUydzbUU9No4_qgOjkLdqrCXHpl5d-Js69y4j8kKzDgClLA8Sog-PfBxF5ObdSm65QzfoiSFOky4KWoEnqyRHXwMUlu12sIlgvzcm0-sUe_71qTP54TcLoEYhq5iQnyzQ_BJVf_pH0DLcuMxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754525869</pqid></control><display><type>article</type><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</creator><creatorcontrib>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</creatorcontrib><description>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of RPS23RG1 mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of Rps23rg1 in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18668</identifier><identifier>PMID: 26733416</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/89 ; 13/95 ; 14/63 ; 45 ; 631/378/1689/1283 ; 631/80/304 ; Adenylyl Cyclases - metabolism ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer Disease - physiopathology ; Amyloid beta-Peptides - metabolism ; Animals ; Base Sequence ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - pathology ; Cloning, Molecular ; Cognitive Dysfunction - genetics ; Cognitive Dysfunction - metabolism ; Cognitive Dysfunction - pathology ; Cognitive Dysfunction - physiopathology ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Gene Knockdown Techniques ; Humanities and Social Sciences ; Humans ; Long-Term Potentiation - genetics ; Mice ; Mice, Transgenic ; multidisciplinary ; Neuronal Plasticity ; Neurons - metabolism ; Phosphorylation ; Protein Aggregates ; Protein Aggregation, Pathological - metabolism ; Protein Binding ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA, Messenger - genetics ; Science ; Synapses - metabolism ; tau Proteins - genetics ; tau Proteins - metabolism</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.18668-18668, Article 18668</ispartof><rights>The Author(s) 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</citedby><cites>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702092/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702092/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26733416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Chen, Yaomin</creatorcontrib><creatorcontrib>Li, Wubo</creatorcontrib><creatorcontrib>Huang, Xiumei</creatorcontrib><creatorcontrib>Badie, Hedieh</creatorcontrib><creatorcontrib>Jian, Fan</creatorcontrib><creatorcontrib>Huang, Timothy</creatorcontrib><creatorcontrib>Zhao, Yingjun</creatorcontrib><creatorcontrib>Cohen, Stanley N.</creatorcontrib><creatorcontrib>Li, Limin</creatorcontrib><creatorcontrib>Zhang, Yun-wu</creatorcontrib><creatorcontrib>Luo, Huanmin</creatorcontrib><creatorcontrib>Tu, Shichun</creatorcontrib><creatorcontrib>Xu, Huaxi</creatorcontrib><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of RPS23RG1 mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of Rps23rg1 in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</description><subject>13/1</subject><subject>13/109</subject><subject>13/89</subject><subject>13/95</subject><subject>14/63</subject><subject>45</subject><subject>631/378/1689/1283</subject><subject>631/80/304</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - pathology</subject><subject>Cloning, Molecular</subject><subject>Cognitive Dysfunction - genetics</subject><subject>Cognitive Dysfunction - metabolism</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Long-Term Potentiation - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological - metabolism</subject><subject>Protein Binding</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Science</subject><subject>Synapses - metabolism</subject><subject>tau Proteins - genetics</subject><subject>tau Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkNtKxDAQhoMoKuqFLyC9VKGaTA5tbwRZ1gMIiofrkKbpGukma9IK-1o-iM9kll0XBecmQ-bjn-FD6JDgM4JpeR6DmZFSiHID7QJmPAcKsPmr30EHMb7hVBwqRqpttAOioJQRsYvGjw9PQB-vSRZMM2gTs8uvz8x3duKnJuTWLT6bLM6dmvVWZ8o1mfYTZ3v7YbLGtFbbPu6jrVZ10Rys3j30cjV-Ht3kd_fXt6PLu1wzgvucAHDgDQjKGcecFRUQ3takLbXihOFaF4IAU6qqKXBVU1YxqnhrCIhGC0P30MUydzbUU9No4_qgOjkLdqrCXHpl5d-Js69y4j8kKzDgClLA8Sog-PfBxF5ObdSm65QzfoiSFOky4KWoEnqyRHXwMUlu12sIlgvzcm0-sUe_71qTP54TcLoEYhq5iQnyzQ_BJVf_pH0DLcuMxA</recordid><startdate>20160106</startdate><enddate>20160106</enddate><creator>Yan, Li</creator><creator>Chen, Yaomin</creator><creator>Li, Wubo</creator><creator>Huang, Xiumei</creator><creator>Badie, Hedieh</creator><creator>Jian, Fan</creator><creator>Huang, Timothy</creator><creator>Zhao, Yingjun</creator><creator>Cohen, Stanley N.</creator><creator>Li, Limin</creator><creator>Zhang, Yun-wu</creator><creator>Luo, Huanmin</creator><creator>Tu, Shichun</creator><creator>Xu, Huaxi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160106</creationdate><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><author>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/89</topic><topic>13/95</topic><topic>14/63</topic><topic>45</topic><topic>631/378/1689/1283</topic><topic>631/80/304</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - pathology</topic><topic>Cloning, Molecular</topic><topic>Cognitive Dysfunction - genetics</topic><topic>Cognitive Dysfunction - metabolism</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Long-Term Potentiation - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological - metabolism</topic><topic>Protein Binding</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Science</topic><topic>Synapses - metabolism</topic><topic>tau Proteins - genetics</topic><topic>tau Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Chen, Yaomin</creatorcontrib><creatorcontrib>Li, Wubo</creatorcontrib><creatorcontrib>Huang, Xiumei</creatorcontrib><creatorcontrib>Badie, Hedieh</creatorcontrib><creatorcontrib>Jian, Fan</creatorcontrib><creatorcontrib>Huang, Timothy</creatorcontrib><creatorcontrib>Zhao, Yingjun</creatorcontrib><creatorcontrib>Cohen, Stanley N.</creatorcontrib><creatorcontrib>Li, Limin</creatorcontrib><creatorcontrib>Zhang, Yun-wu</creatorcontrib><creatorcontrib>Luo, Huanmin</creatorcontrib><creatorcontrib>Tu, Shichun</creatorcontrib><creatorcontrib>Xu, Huaxi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Li</au><au>Chen, Yaomin</au><au>Li, Wubo</au><au>Huang, Xiumei</au><au>Badie, Hedieh</au><au>Jian, Fan</au><au>Huang, Timothy</au><au>Zhao, Yingjun</au><au>Cohen, Stanley N.</au><au>Li, Limin</au><au>Zhang, Yun-wu</au><au>Luo, Huanmin</au><au>Tu, Shichun</au><au>Xu, Huaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>18668</spage><epage>18668</epage><pages>18668-18668</pages><artnum>18668</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of RPS23RG1 mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of Rps23rg1 in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26733416</pmid><doi>10.1038/srep18668</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-01, Vol.6 (1), p.18668-18668, Article 18668
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702092
source Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/109
13/89
13/95
14/63
45
631/378/1689/1283
631/80/304
Adenylyl Cyclases - metabolism
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer Disease - physiopathology
Amyloid beta-Peptides - metabolism
Animals
Base Sequence
CA1 Region, Hippocampal - metabolism
CA1 Region, Hippocampal - pathology
Cloning, Molecular
Cognitive Dysfunction - genetics
Cognitive Dysfunction - metabolism
Cognitive Dysfunction - pathology
Cognitive Dysfunction - physiopathology
Cyclic AMP-Dependent Protein Kinases - metabolism
Disease Models, Animal
Gene Expression Regulation
Gene Knockdown Techniques
Humanities and Social Sciences
Humans
Long-Term Potentiation - genetics
Mice
Mice, Transgenic
multidisciplinary
Neuronal Plasticity
Neurons - metabolism
Phosphorylation
Protein Aggregates
Protein Aggregation, Pathological - metabolism
Protein Binding
Ribosomal Proteins - chemistry
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
RNA, Messenger - genetics
Science
Synapses - metabolism
tau Proteins - genetics
tau Proteins - metabolism
title RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPS23RG1%20reduces%20A%CE%B2%20oligomer-induced%20synaptic%20and%20cognitive%20deficits&rft.jtitle=Scientific%20reports&rft.au=Yan,%20Li&rft.date=2016-01-06&rft.volume=6&rft.issue=1&rft.spage=18668&rft.epage=18668&rft.pages=18668-18668&rft.artnum=18668&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18668&rft_dat=%3Cproquest_pubme%3E1754525869%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1754525869&rft_id=info:pmid/26733416&rfr_iscdi=true