Loading…
RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD. Rps23rg1 , a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ...
Saved in:
Published in: | Scientific reports 2016-01, Vol.6 (1), p.18668-18668, Article 18668 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3 |
container_end_page | 18668 |
container_issue | 1 |
container_start_page | 18668 |
container_title | Scientific reports |
container_volume | 6 |
creator | Yan, Li Chen, Yaomin Li, Wubo Huang, Xiumei Badie, Hedieh Jian, Fan Huang, Timothy Zhao, Yingjun Cohen, Stanley N. Li, Limin Zhang, Yun-wu Luo, Huanmin Tu, Shichun Xu, Huaxi |
description | Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD.
Rps23rg1
, a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of
RPS23RG1
mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of
Rps23rg1
in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD. |
doi_str_mv | 10.1038/srep18668 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754525869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</originalsourceid><addsrcrecordid>eNptkNtKxDAQhoMoKuqFLyC9VKGaTA5tbwRZ1gMIiofrkKbpGukma9IK-1o-iM9kll0XBecmQ-bjn-FD6JDgM4JpeR6DmZFSiHID7QJmPAcKsPmr30EHMb7hVBwqRqpttAOioJQRsYvGjw9PQB-vSRZMM2gTs8uvz8x3duKnJuTWLT6bLM6dmvVWZ8o1mfYTZ3v7YbLGtFbbPu6jrVZ10Rys3j30cjV-Ht3kd_fXt6PLu1wzgvucAHDgDQjKGcecFRUQ3takLbXihOFaF4IAU6qqKXBVU1YxqnhrCIhGC0P30MUydzbUU9No4_qgOjkLdqrCXHpl5d-Js69y4j8kKzDgClLA8Sog-PfBxF5ObdSm65QzfoiSFOky4KWoEnqyRHXwMUlu12sIlgvzcm0-sUe_71qTP54TcLoEYhq5iQnyzQ_BJVf_pH0DLcuMxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754525869</pqid></control><display><type>article</type><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</creator><creatorcontrib>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</creatorcontrib><description>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD.
Rps23rg1
, a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of
RPS23RG1
mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of
Rps23rg1
in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18668</identifier><identifier>PMID: 26733416</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/89 ; 13/95 ; 14/63 ; 45 ; 631/378/1689/1283 ; 631/80/304 ; Adenylyl Cyclases - metabolism ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer Disease - physiopathology ; Amyloid beta-Peptides - metabolism ; Animals ; Base Sequence ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - pathology ; Cloning, Molecular ; Cognitive Dysfunction - genetics ; Cognitive Dysfunction - metabolism ; Cognitive Dysfunction - pathology ; Cognitive Dysfunction - physiopathology ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Gene Knockdown Techniques ; Humanities and Social Sciences ; Humans ; Long-Term Potentiation - genetics ; Mice ; Mice, Transgenic ; multidisciplinary ; Neuronal Plasticity ; Neurons - metabolism ; Phosphorylation ; Protein Aggregates ; Protein Aggregation, Pathological - metabolism ; Protein Binding ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA, Messenger - genetics ; Science ; Synapses - metabolism ; tau Proteins - genetics ; tau Proteins - metabolism</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.18668-18668, Article 18668</ispartof><rights>The Author(s) 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</citedby><cites>FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702092/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702092/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26733416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Chen, Yaomin</creatorcontrib><creatorcontrib>Li, Wubo</creatorcontrib><creatorcontrib>Huang, Xiumei</creatorcontrib><creatorcontrib>Badie, Hedieh</creatorcontrib><creatorcontrib>Jian, Fan</creatorcontrib><creatorcontrib>Huang, Timothy</creatorcontrib><creatorcontrib>Zhao, Yingjun</creatorcontrib><creatorcontrib>Cohen, Stanley N.</creatorcontrib><creatorcontrib>Li, Limin</creatorcontrib><creatorcontrib>Zhang, Yun-wu</creatorcontrib><creatorcontrib>Luo, Huanmin</creatorcontrib><creatorcontrib>Tu, Shichun</creatorcontrib><creatorcontrib>Xu, Huaxi</creatorcontrib><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD.
Rps23rg1
, a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of
RPS23RG1
mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of
Rps23rg1
in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</description><subject>13/1</subject><subject>13/109</subject><subject>13/89</subject><subject>13/95</subject><subject>14/63</subject><subject>45</subject><subject>631/378/1689/1283</subject><subject>631/80/304</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - pathology</subject><subject>Cloning, Molecular</subject><subject>Cognitive Dysfunction - genetics</subject><subject>Cognitive Dysfunction - metabolism</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Long-Term Potentiation - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological - metabolism</subject><subject>Protein Binding</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Science</subject><subject>Synapses - metabolism</subject><subject>tau Proteins - genetics</subject><subject>tau Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkNtKxDAQhoMoKuqFLyC9VKGaTA5tbwRZ1gMIiofrkKbpGukma9IK-1o-iM9kll0XBecmQ-bjn-FD6JDgM4JpeR6DmZFSiHID7QJmPAcKsPmr30EHMb7hVBwqRqpttAOioJQRsYvGjw9PQB-vSRZMM2gTs8uvz8x3duKnJuTWLT6bLM6dmvVWZ8o1mfYTZ3v7YbLGtFbbPu6jrVZ10Rys3j30cjV-Ht3kd_fXt6PLu1wzgvucAHDgDQjKGcecFRUQ3takLbXihOFaF4IAU6qqKXBVU1YxqnhrCIhGC0P30MUydzbUU9No4_qgOjkLdqrCXHpl5d-Js69y4j8kKzDgClLA8Sog-PfBxF5ObdSm65QzfoiSFOky4KWoEnqyRHXwMUlu12sIlgvzcm0-sUe_71qTP54TcLoEYhq5iQnyzQ_BJVf_pH0DLcuMxA</recordid><startdate>20160106</startdate><enddate>20160106</enddate><creator>Yan, Li</creator><creator>Chen, Yaomin</creator><creator>Li, Wubo</creator><creator>Huang, Xiumei</creator><creator>Badie, Hedieh</creator><creator>Jian, Fan</creator><creator>Huang, Timothy</creator><creator>Zhao, Yingjun</creator><creator>Cohen, Stanley N.</creator><creator>Li, Limin</creator><creator>Zhang, Yun-wu</creator><creator>Luo, Huanmin</creator><creator>Tu, Shichun</creator><creator>Xu, Huaxi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160106</creationdate><title>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</title><author>Yan, Li ; Chen, Yaomin ; Li, Wubo ; Huang, Xiumei ; Badie, Hedieh ; Jian, Fan ; Huang, Timothy ; Zhao, Yingjun ; Cohen, Stanley N. ; Li, Limin ; Zhang, Yun-wu ; Luo, Huanmin ; Tu, Shichun ; Xu, Huaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/89</topic><topic>13/95</topic><topic>14/63</topic><topic>45</topic><topic>631/378/1689/1283</topic><topic>631/80/304</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - pathology</topic><topic>Cloning, Molecular</topic><topic>Cognitive Dysfunction - genetics</topic><topic>Cognitive Dysfunction - metabolism</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Long-Term Potentiation - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological - metabolism</topic><topic>Protein Binding</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Science</topic><topic>Synapses - metabolism</topic><topic>tau Proteins - genetics</topic><topic>tau Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Chen, Yaomin</creatorcontrib><creatorcontrib>Li, Wubo</creatorcontrib><creatorcontrib>Huang, Xiumei</creatorcontrib><creatorcontrib>Badie, Hedieh</creatorcontrib><creatorcontrib>Jian, Fan</creatorcontrib><creatorcontrib>Huang, Timothy</creatorcontrib><creatorcontrib>Zhao, Yingjun</creatorcontrib><creatorcontrib>Cohen, Stanley N.</creatorcontrib><creatorcontrib>Li, Limin</creatorcontrib><creatorcontrib>Zhang, Yun-wu</creatorcontrib><creatorcontrib>Luo, Huanmin</creatorcontrib><creatorcontrib>Tu, Shichun</creatorcontrib><creatorcontrib>Xu, Huaxi</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Li</au><au>Chen, Yaomin</au><au>Li, Wubo</au><au>Huang, Xiumei</au><au>Badie, Hedieh</au><au>Jian, Fan</au><au>Huang, Timothy</au><au>Zhao, Yingjun</au><au>Cohen, Stanley N.</au><au>Li, Limin</au><au>Zhang, Yun-wu</au><au>Luo, Huanmin</au><au>Tu, Shichun</au><au>Xu, Huaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>18668</spage><epage>18668</epage><pages>18668-18668</pages><artnum>18668</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation and synaptic loss underlie cognitive decline in AD.
Rps23rg1
, a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of
RPS23RG1
mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of
Rps23rg1
in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26733416</pmid><doi>10.1038/srep18668</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-01, Vol.6 (1), p.18668-18668, Article 18668 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702092 |
source | Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/109 13/89 13/95 14/63 45 631/378/1689/1283 631/80/304 Adenylyl Cyclases - metabolism Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer Disease - physiopathology Amyloid beta-Peptides - metabolism Animals Base Sequence CA1 Region, Hippocampal - metabolism CA1 Region, Hippocampal - pathology Cloning, Molecular Cognitive Dysfunction - genetics Cognitive Dysfunction - metabolism Cognitive Dysfunction - pathology Cognitive Dysfunction - physiopathology Cyclic AMP-Dependent Protein Kinases - metabolism Disease Models, Animal Gene Expression Regulation Gene Knockdown Techniques Humanities and Social Sciences Humans Long-Term Potentiation - genetics Mice Mice, Transgenic multidisciplinary Neuronal Plasticity Neurons - metabolism Phosphorylation Protein Aggregates Protein Aggregation, Pathological - metabolism Protein Binding Ribosomal Proteins - chemistry Ribosomal Proteins - genetics Ribosomal Proteins - metabolism RNA, Messenger - genetics Science Synapses - metabolism tau Proteins - genetics tau Proteins - metabolism |
title | RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPS23RG1%20reduces%20A%CE%B2%20oligomer-induced%20synaptic%20and%20cognitive%20deficits&rft.jtitle=Scientific%20reports&rft.au=Yan,%20Li&rft.date=2016-01-06&rft.volume=6&rft.issue=1&rft.spage=18668&rft.epage=18668&rft.pages=18668-18668&rft.artnum=18668&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18668&rft_dat=%3Cproquest_pubme%3E1754525869%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-122525d26354505479215fb1f8ca5140bc76124aa9b325ab34943a5fe126dc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1754525869&rft_id=info:pmid/26733416&rfr_iscdi=true |