Loading…

Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation

Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-01, Vol.6 (1), p.18944-18944, Article 18944
Main Authors: Takagi, Ayano, Kume, Shinji, Kondo, Motoyuki, Nakazawa, Jun, Chin-Kanasaki, Masami, Araki, Hisazumi, Araki, Shin-ichi, Koya, Daisuke, Haneda, Masakazu, Chano, Tokuhiro, Matsusaka, Taiji, Nagao, Kenji, Adachi, Yusuke, Chan, Lawrence, Maegawa, Hiroshi, Uzu, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3
cites cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3
container_end_page 18944
container_issue 1
container_start_page 18944
container_title Scientific reports
container_volume 6
creator Takagi, Ayano
Kume, Shinji
Kondo, Motoyuki
Nakazawa, Jun
Chin-Kanasaki, Masami
Araki, Hisazumi
Araki, Shin-ichi
Koya, Daisuke
Haneda, Masakazu
Chano, Tokuhiro
Matsusaka, Taiji
Nagao, Kenji
Adachi, Yusuke
Chan, Lawrence
Maegawa, Hiroshi
Uzu, Takashi
description Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.
doi_str_mv 10.1038/srep18944
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754525759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</originalsourceid><addsrcrecordid>eNplkV9PwyAUxYnRuGXuwS9gmviiJlOgUMqLiVn8l8z4Mp8JbWnHbKFCu2TfXpbNZSovwOXHuSf3AHCO4C2CcXrnnWpRygk5AkMMCZ3gGOPjg_MAjL1fwrAo5gTxUzDACYtxQuMhmL_JppG1liaSfWfbhazWkfaR8l6ZTss6Kq2LFqqVnc4jaYrIKROqn6qzlTLKB7bonTZV5DvpVgGz5gyclLL2arzbR-Dj6XE-fZnM3p9fpw-zSU7TtJvQgmaoKGNJspIRghPECMozhXPOi5TChECWZpBBpBjhccbCnVJYpLxMwo8sHoH7rW7bZ40q8uDYyVq0TjfSrYWVWvx-MXohKrsShEGMGAwCVzsBZ7965TvRaJ-rupZG2d4LxCihmDLKA3r5B13a3oVRBCrlPCTB0Ia63lK5sz4kU-7NICg2cYl9XIG9OHS_J3_CCcDNFvDtZsDKHbT8p_YNhZifRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899038719</pqid></control><display><type>article</type><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</creator><creatorcontrib>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</creatorcontrib><description>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18944</identifier><identifier>PMID: 26732653</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/19 ; 631/443/272 ; 631/443/319 ; 64 ; 64/60 ; 82 ; 82/29 ; Adipose tissue ; Amino Acids - metabolism ; Animals ; Autophagy ; Autophagy-Related Protein 5 - deficiency ; Autophagy-Related Protein 5 - genetics ; Blood ; Blood Glucose ; Energy balance ; Gluconeogenesis ; Homeostasis ; Humanities and Social Sciences ; Ketogenesis ; Ketone Bodies - biosynthesis ; Ketone Bodies - blood ; Ketones ; Kidney - metabolism ; Kidneys ; Lipid Metabolism ; Liver ; Liver - metabolism ; Mammals ; Mice ; Mice, Knockout ; multidisciplinary ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Phagocytosis ; Physical activity ; Rodents ; Science ; Skeletal muscle ; Starvation - metabolism</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.18944-18944, Article 18944</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</citedby><cites>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899038719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899038719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26732653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Ayano</creatorcontrib><creatorcontrib>Kume, Shinji</creatorcontrib><creatorcontrib>Kondo, Motoyuki</creatorcontrib><creatorcontrib>Nakazawa, Jun</creatorcontrib><creatorcontrib>Chin-Kanasaki, Masami</creatorcontrib><creatorcontrib>Araki, Hisazumi</creatorcontrib><creatorcontrib>Araki, Shin-ichi</creatorcontrib><creatorcontrib>Koya, Daisuke</creatorcontrib><creatorcontrib>Haneda, Masakazu</creatorcontrib><creatorcontrib>Chano, Tokuhiro</creatorcontrib><creatorcontrib>Matsusaka, Taiji</creatorcontrib><creatorcontrib>Nagao, Kenji</creatorcontrib><creatorcontrib>Adachi, Yusuke</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Maegawa, Hiroshi</creatorcontrib><creatorcontrib>Uzu, Takashi</creatorcontrib><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</description><subject>14</subject><subject>14/19</subject><subject>631/443/272</subject><subject>631/443/319</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>Adipose tissue</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5 - deficiency</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>Blood</subject><subject>Blood Glucose</subject><subject>Energy balance</subject><subject>Gluconeogenesis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Ketogenesis</subject><subject>Ketone Bodies - biosynthesis</subject><subject>Ketone Bodies - blood</subject><subject>Ketones</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Lipid Metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Phagocytosis</subject><subject>Physical activity</subject><subject>Rodents</subject><subject>Science</subject><subject>Skeletal muscle</subject><subject>Starvation - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9PwyAUxYnRuGXuwS9gmviiJlOgUMqLiVn8l8z4Mp8JbWnHbKFCu2TfXpbNZSovwOXHuSf3AHCO4C2CcXrnnWpRygk5AkMMCZ3gGOPjg_MAjL1fwrAo5gTxUzDACYtxQuMhmL_JppG1liaSfWfbhazWkfaR8l6ZTss6Kq2LFqqVnc4jaYrIKROqn6qzlTLKB7bonTZV5DvpVgGz5gyclLL2arzbR-Dj6XE-fZnM3p9fpw-zSU7TtJvQgmaoKGNJspIRghPECMozhXPOi5TChECWZpBBpBjhccbCnVJYpLxMwo8sHoH7rW7bZ40q8uDYyVq0TjfSrYWVWvx-MXohKrsShEGMGAwCVzsBZ7965TvRaJ-rupZG2d4LxCihmDLKA3r5B13a3oVRBCrlPCTB0Ia63lK5sz4kU-7NICg2cYl9XIG9OHS_J3_CCcDNFvDtZsDKHbT8p_YNhZifRw</recordid><startdate>20160106</startdate><enddate>20160106</enddate><creator>Takagi, Ayano</creator><creator>Kume, Shinji</creator><creator>Kondo, Motoyuki</creator><creator>Nakazawa, Jun</creator><creator>Chin-Kanasaki, Masami</creator><creator>Araki, Hisazumi</creator><creator>Araki, Shin-ichi</creator><creator>Koya, Daisuke</creator><creator>Haneda, Masakazu</creator><creator>Chano, Tokuhiro</creator><creator>Matsusaka, Taiji</creator><creator>Nagao, Kenji</creator><creator>Adachi, Yusuke</creator><creator>Chan, Lawrence</creator><creator>Maegawa, Hiroshi</creator><creator>Uzu, Takashi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160106</creationdate><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><author>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14</topic><topic>14/19</topic><topic>631/443/272</topic><topic>631/443/319</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>Adipose tissue</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5 - deficiency</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>Blood</topic><topic>Blood Glucose</topic><topic>Energy balance</topic><topic>Gluconeogenesis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Ketogenesis</topic><topic>Ketone Bodies - biosynthesis</topic><topic>Ketone Bodies - blood</topic><topic>Ketones</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Lipid Metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Phagocytosis</topic><topic>Physical activity</topic><topic>Rodents</topic><topic>Science</topic><topic>Skeletal muscle</topic><topic>Starvation - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Ayano</creatorcontrib><creatorcontrib>Kume, Shinji</creatorcontrib><creatorcontrib>Kondo, Motoyuki</creatorcontrib><creatorcontrib>Nakazawa, Jun</creatorcontrib><creatorcontrib>Chin-Kanasaki, Masami</creatorcontrib><creatorcontrib>Araki, Hisazumi</creatorcontrib><creatorcontrib>Araki, Shin-ichi</creatorcontrib><creatorcontrib>Koya, Daisuke</creatorcontrib><creatorcontrib>Haneda, Masakazu</creatorcontrib><creatorcontrib>Chano, Tokuhiro</creatorcontrib><creatorcontrib>Matsusaka, Taiji</creatorcontrib><creatorcontrib>Nagao, Kenji</creatorcontrib><creatorcontrib>Adachi, Yusuke</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Maegawa, Hiroshi</creatorcontrib><creatorcontrib>Uzu, Takashi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Ayano</au><au>Kume, Shinji</au><au>Kondo, Motoyuki</au><au>Nakazawa, Jun</au><au>Chin-Kanasaki, Masami</au><au>Araki, Hisazumi</au><au>Araki, Shin-ichi</au><au>Koya, Daisuke</au><au>Haneda, Masakazu</au><au>Chano, Tokuhiro</au><au>Matsusaka, Taiji</au><au>Nagao, Kenji</au><au>Adachi, Yusuke</au><au>Chan, Lawrence</au><au>Maegawa, Hiroshi</au><au>Uzu, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>18944</spage><epage>18944</epage><pages>18944-18944</pages><artnum>18944</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26732653</pmid><doi>10.1038/srep18944</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-01, Vol.6 (1), p.18944-18944, Article 18944
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702170
source PubMed Central Free; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 14
14/19
631/443/272
631/443/319
64
64/60
82
82/29
Adipose tissue
Amino Acids - metabolism
Animals
Autophagy
Autophagy-Related Protein 5 - deficiency
Autophagy-Related Protein 5 - genetics
Blood
Blood Glucose
Energy balance
Gluconeogenesis
Homeostasis
Humanities and Social Sciences
Ketogenesis
Ketone Bodies - biosynthesis
Ketone Bodies - blood
Ketones
Kidney - metabolism
Kidneys
Lipid Metabolism
Liver
Liver - metabolism
Mammals
Mice
Mice, Knockout
multidisciplinary
Muscle, Skeletal - metabolism
Musculoskeletal system
Phagocytosis
Physical activity
Rodents
Science
Skeletal muscle
Starvation - metabolism
title Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20autophagy%20is%20essential%20for%20hepatic%20and%20renal%20ketogenesis%20during%20starvation&rft.jtitle=Scientific%20reports&rft.au=Takagi,%20Ayano&rft.date=2016-01-06&rft.volume=6&rft.issue=1&rft.spage=18944&rft.epage=18944&rft.pages=18944-18944&rft.artnum=18944&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18944&rft_dat=%3Cproquest_pubme%3E1754525759%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899038719&rft_id=info:pmid/26732653&rfr_iscdi=true