Loading…
Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation
Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study...
Saved in:
Published in: | Scientific reports 2016-01, Vol.6 (1), p.18944-18944, Article 18944 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3 |
container_end_page | 18944 |
container_issue | 1 |
container_start_page | 18944 |
container_title | Scientific reports |
container_volume | 6 |
creator | Takagi, Ayano Kume, Shinji Kondo, Motoyuki Nakazawa, Jun Chin-Kanasaki, Masami Araki, Hisazumi Araki, Shin-ichi Koya, Daisuke Haneda, Masakazu Chano, Tokuhiro Matsusaka, Taiji Nagao, Kenji Adachi, Yusuke Chan, Lawrence Maegawa, Hiroshi Uzu, Takashi |
description | Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals. |
doi_str_mv | 10.1038/srep18944 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1754525759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</originalsourceid><addsrcrecordid>eNplkV9PwyAUxYnRuGXuwS9gmviiJlOgUMqLiVn8l8z4Mp8JbWnHbKFCu2TfXpbNZSovwOXHuSf3AHCO4C2CcXrnnWpRygk5AkMMCZ3gGOPjg_MAjL1fwrAo5gTxUzDACYtxQuMhmL_JppG1liaSfWfbhazWkfaR8l6ZTss6Kq2LFqqVnc4jaYrIKROqn6qzlTLKB7bonTZV5DvpVgGz5gyclLL2arzbR-Dj6XE-fZnM3p9fpw-zSU7TtJvQgmaoKGNJspIRghPECMozhXPOi5TChECWZpBBpBjhccbCnVJYpLxMwo8sHoH7rW7bZ40q8uDYyVq0TjfSrYWVWvx-MXohKrsShEGMGAwCVzsBZ7965TvRaJ-rupZG2d4LxCihmDLKA3r5B13a3oVRBCrlPCTB0Ia63lK5sz4kU-7NICg2cYl9XIG9OHS_J3_CCcDNFvDtZsDKHbT8p_YNhZifRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899038719</pqid></control><display><type>article</type><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</creator><creatorcontrib>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</creatorcontrib><description>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18944</identifier><identifier>PMID: 26732653</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/19 ; 631/443/272 ; 631/443/319 ; 64 ; 64/60 ; 82 ; 82/29 ; Adipose tissue ; Amino Acids - metabolism ; Animals ; Autophagy ; Autophagy-Related Protein 5 - deficiency ; Autophagy-Related Protein 5 - genetics ; Blood ; Blood Glucose ; Energy balance ; Gluconeogenesis ; Homeostasis ; Humanities and Social Sciences ; Ketogenesis ; Ketone Bodies - biosynthesis ; Ketone Bodies - blood ; Ketones ; Kidney - metabolism ; Kidneys ; Lipid Metabolism ; Liver ; Liver - metabolism ; Mammals ; Mice ; Mice, Knockout ; multidisciplinary ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Phagocytosis ; Physical activity ; Rodents ; Science ; Skeletal muscle ; Starvation - metabolism</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.18944-18944, Article 18944</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</citedby><cites>FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899038719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899038719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26732653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Ayano</creatorcontrib><creatorcontrib>Kume, Shinji</creatorcontrib><creatorcontrib>Kondo, Motoyuki</creatorcontrib><creatorcontrib>Nakazawa, Jun</creatorcontrib><creatorcontrib>Chin-Kanasaki, Masami</creatorcontrib><creatorcontrib>Araki, Hisazumi</creatorcontrib><creatorcontrib>Araki, Shin-ichi</creatorcontrib><creatorcontrib>Koya, Daisuke</creatorcontrib><creatorcontrib>Haneda, Masakazu</creatorcontrib><creatorcontrib>Chano, Tokuhiro</creatorcontrib><creatorcontrib>Matsusaka, Taiji</creatorcontrib><creatorcontrib>Nagao, Kenji</creatorcontrib><creatorcontrib>Adachi, Yusuke</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Maegawa, Hiroshi</creatorcontrib><creatorcontrib>Uzu, Takashi</creatorcontrib><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</description><subject>14</subject><subject>14/19</subject><subject>631/443/272</subject><subject>631/443/319</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>Adipose tissue</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5 - deficiency</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>Blood</subject><subject>Blood Glucose</subject><subject>Energy balance</subject><subject>Gluconeogenesis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Ketogenesis</subject><subject>Ketone Bodies - biosynthesis</subject><subject>Ketone Bodies - blood</subject><subject>Ketones</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Lipid Metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Phagocytosis</subject><subject>Physical activity</subject><subject>Rodents</subject><subject>Science</subject><subject>Skeletal muscle</subject><subject>Starvation - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9PwyAUxYnRuGXuwS9gmviiJlOgUMqLiVn8l8z4Mp8JbWnHbKFCu2TfXpbNZSovwOXHuSf3AHCO4C2CcXrnnWpRygk5AkMMCZ3gGOPjg_MAjL1fwrAo5gTxUzDACYtxQuMhmL_JppG1liaSfWfbhazWkfaR8l6ZTss6Kq2LFqqVnc4jaYrIKROqn6qzlTLKB7bonTZV5DvpVgGz5gyclLL2arzbR-Dj6XE-fZnM3p9fpw-zSU7TtJvQgmaoKGNJspIRghPECMozhXPOi5TChECWZpBBpBjhccbCnVJYpLxMwo8sHoH7rW7bZ40q8uDYyVq0TjfSrYWVWvx-MXohKrsShEGMGAwCVzsBZ7965TvRaJ-rupZG2d4LxCihmDLKA3r5B13a3oVRBCrlPCTB0Ia63lK5sz4kU-7NICg2cYl9XIG9OHS_J3_CCcDNFvDtZsDKHbT8p_YNhZifRw</recordid><startdate>20160106</startdate><enddate>20160106</enddate><creator>Takagi, Ayano</creator><creator>Kume, Shinji</creator><creator>Kondo, Motoyuki</creator><creator>Nakazawa, Jun</creator><creator>Chin-Kanasaki, Masami</creator><creator>Araki, Hisazumi</creator><creator>Araki, Shin-ichi</creator><creator>Koya, Daisuke</creator><creator>Haneda, Masakazu</creator><creator>Chano, Tokuhiro</creator><creator>Matsusaka, Taiji</creator><creator>Nagao, Kenji</creator><creator>Adachi, Yusuke</creator><creator>Chan, Lawrence</creator><creator>Maegawa, Hiroshi</creator><creator>Uzu, Takashi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160106</creationdate><title>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</title><author>Takagi, Ayano ; Kume, Shinji ; Kondo, Motoyuki ; Nakazawa, Jun ; Chin-Kanasaki, Masami ; Araki, Hisazumi ; Araki, Shin-ichi ; Koya, Daisuke ; Haneda, Masakazu ; Chano, Tokuhiro ; Matsusaka, Taiji ; Nagao, Kenji ; Adachi, Yusuke ; Chan, Lawrence ; Maegawa, Hiroshi ; Uzu, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14</topic><topic>14/19</topic><topic>631/443/272</topic><topic>631/443/319</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>Adipose tissue</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5 - deficiency</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>Blood</topic><topic>Blood Glucose</topic><topic>Energy balance</topic><topic>Gluconeogenesis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Ketogenesis</topic><topic>Ketone Bodies - biosynthesis</topic><topic>Ketone Bodies - blood</topic><topic>Ketones</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Lipid Metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Phagocytosis</topic><topic>Physical activity</topic><topic>Rodents</topic><topic>Science</topic><topic>Skeletal muscle</topic><topic>Starvation - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Ayano</creatorcontrib><creatorcontrib>Kume, Shinji</creatorcontrib><creatorcontrib>Kondo, Motoyuki</creatorcontrib><creatorcontrib>Nakazawa, Jun</creatorcontrib><creatorcontrib>Chin-Kanasaki, Masami</creatorcontrib><creatorcontrib>Araki, Hisazumi</creatorcontrib><creatorcontrib>Araki, Shin-ichi</creatorcontrib><creatorcontrib>Koya, Daisuke</creatorcontrib><creatorcontrib>Haneda, Masakazu</creatorcontrib><creatorcontrib>Chano, Tokuhiro</creatorcontrib><creatorcontrib>Matsusaka, Taiji</creatorcontrib><creatorcontrib>Nagao, Kenji</creatorcontrib><creatorcontrib>Adachi, Yusuke</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Maegawa, Hiroshi</creatorcontrib><creatorcontrib>Uzu, Takashi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Ayano</au><au>Kume, Shinji</au><au>Kondo, Motoyuki</au><au>Nakazawa, Jun</au><au>Chin-Kanasaki, Masami</au><au>Araki, Hisazumi</au><au>Araki, Shin-ichi</au><au>Koya, Daisuke</au><au>Haneda, Masakazu</au><au>Chano, Tokuhiro</au><au>Matsusaka, Taiji</au><au>Nagao, Kenji</au><au>Adachi, Yusuke</au><au>Chan, Lawrence</au><au>Maegawa, Hiroshi</au><au>Uzu, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>18944</spage><epage>18944</epage><pages>18944-18944</pages><artnum>18944</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26732653</pmid><doi>10.1038/srep18944</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-01, Vol.6 (1), p.18944-18944, Article 18944 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4702170 |
source | PubMed Central Free; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14 14/19 631/443/272 631/443/319 64 64/60 82 82/29 Adipose tissue Amino Acids - metabolism Animals Autophagy Autophagy-Related Protein 5 - deficiency Autophagy-Related Protein 5 - genetics Blood Blood Glucose Energy balance Gluconeogenesis Homeostasis Humanities and Social Sciences Ketogenesis Ketone Bodies - biosynthesis Ketone Bodies - blood Ketones Kidney - metabolism Kidneys Lipid Metabolism Liver Liver - metabolism Mammals Mice Mice, Knockout multidisciplinary Muscle, Skeletal - metabolism Musculoskeletal system Phagocytosis Physical activity Rodents Science Skeletal muscle Starvation - metabolism |
title | Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20autophagy%20is%20essential%20for%20hepatic%20and%20renal%20ketogenesis%20during%20starvation&rft.jtitle=Scientific%20reports&rft.au=Takagi,%20Ayano&rft.date=2016-01-06&rft.volume=6&rft.issue=1&rft.spage=18944&rft.epage=18944&rft.pages=18944-18944&rft.artnum=18944&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18944&rft_dat=%3Cproquest_pubme%3E1754525759%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-5d5b1df3a4bf744261741cbe2c99d85064078b0701e7493b7407550d89f6bf7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899038719&rft_id=info:pmid/26732653&rfr_iscdi=true |