Loading…
RNA Silencing May Play a Role in but Is Not the Only Determinant of the Multiplicity of Infection
The multiplicity of infection (MOI), i.e., the number of viral genomes that infect a cell, is an important parameter in virus evolution, which for each virus and environment may have an optimum value that maximizes virus fitness. Thus, the MOI might be controlled by virus functions, an underexplored...
Saved in:
Published in: | Journal of virology 2016-01, Vol.90 (1), p.553-561 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The multiplicity of infection (MOI), i.e., the number of viral genomes that infect a cell, is an important parameter in virus evolution, which for each virus and environment may have an optimum value that maximizes virus fitness. Thus, the MOI might be controlled by virus functions, an underexplored hypothesis in eukaryote-infecting viruses. To analyze if the MOI is controlled by virus functions, we estimated the MOI in plants coinfected by two genetic variants of Tomato bushy stunt virus (TBSV); by TBSV and a TBSV-derived defective interfering RNA (DI-RNA); or by TBSV and a second tombusvirus, Cymbidium ringspot virus (CymRSV). The MOI was significantly larger in TBSV-CymRSV coinfections (~4.0) than in TBSV-TBSV or TBSV-DI-RNA coinfections (~1.7 to 2.2). Coinfections by CymRSV or TBSV with chimeras in which an open reading frame (ORF) of one virus species was replaced by that of the other identified a role of viral proteins in determining the MOI, which ranged from 1.6 to 3.9 depending on the coinfecting genotypes. However, no virus-encoded protein or genomic region was the sole MOI determinant. Coinfections by CymRSV and TBSV mutants in which the expression of the gene-silencing suppressor protein p19 was abolished also showed a possible role of gene silencing in MOI determination. Taken together, these results demonstrate that the MOI is a quantitative trait showing continuous variation and that as such it has a complex determination involving different virus-encoded functions.
The number of viral genomes infecting a cell, or the multiplicity of infection (MOI), is an important parameter in virus evolution affecting recombination rates, selection intensity on viral genes, evolution of multipartite genomes, or hyperparasitism by satellites or defective interfering particles. For each virus and environment, the MOI may have an optimum value that maximizes virus fitness, but little is known about MOI control in eukaryote-infecting viruses. We show here that in plants coinfected by two genotypes of Tomato bushy stunt virus (TBSV), the MOI was lower than in plants coinfected by TBSV and Cymbidium ringspot virus (CymRSV). Coinfections by CymRSV or TBSV with TBSV-CymRSV chimeras showed a role of viral proteins in MOI determination. Coinfections by CymRSV and TBSV mutants not expressing the gene-silencing suppressor protein also showed a role of gene silencing in MOI determination. The results demonstrate that the MOI is a quantitative trait with a complex dete |
---|---|
ISSN: | 0022-538X 1098-5514 |
DOI: | 10.1128/JVI.02345-15 |