Loading…

Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remai...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer 2016-01, Vol.16 (9), p.9-9, Article 9
Main Authors: Vandewynckel, Yves-Paul, Laukens, Debby, Devisscher, Lindsey, Bogaerts, Eliene, Paridaens, Annelies, Van den Bussche, Anja, Raevens, Sarah, Verhelst, Xavier, Van Steenkiste, Christophe, Jonckx, Bart, Libbrecht, Louis, Geerts, Anja, Carmeliet, Peter, Van Vlierberghe, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3
cites cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3
container_end_page 9
container_issue 9
container_start_page 9
container_title BMC cancer
container_volume 16
creator Vandewynckel, Yves-Paul
Laukens, Debby
Devisscher, Lindsey
Bogaerts, Eliene
Paridaens, Annelies
Van den Bussche, Anja
Raevens, Sarah
Verhelst, Xavier
Van Steenkiste, Christophe
Jonckx, Bart
Libbrecht, Louis
Geerts, Anja
Carmeliet, Peter
Van Vlierberghe, Hans
description Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.
doi_str_mv 10.1186/s12885-015-1990-6
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441824909</galeid><sourcerecordid>A441824909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</originalsourceid><addsrcrecordid>eNptkk2L1TAYhYsozjj6A9xIQBBddEzaNEk3wjD4MTCg-LEO703f3kbSpCapM3fvD7fljsO9IFkkJM858J6conjO6DljSrxNrFKqKSlrSta2tBQPilPGJSsrTuXDg_NJ8SSln5Qyqah6XJxUQjZ1I_hp8eeLA4M-gyPbGG7yQHowOURi_WA3NtvgyRi62UHGRPKAy0PGODnYkQ3mG0RPht0Ubi0Q8B2ZfR9chx2ZYshoPYmYpuDTqiMDTpCDQecWv0gMRGN9GOFp8agHl_DZ3X5W_Pjw_vvlp_L688ery4vr0jQ1yyXrgSqsWNtVUHHRARrTVj0zfY0dGFobrhQK0UhQnZJC9gIkMBB133LKTH1WvNv7TvNmxG6dO4LTU7QjxJ0OYPXxi7eD3obfmksqZSUWg9d3BjH8mjFlPdq0zgMew5w0k4IqwWTLF_TlHt2CQ22XWBZHs-L6gnOmKt7SdqHO_0Mtq8PRmuCxt8v9keDNkWBhMt7mLcwp6atvX4_ZVwfsgODykIKb109NxyDbgyaGlCL295Ewqtem6X3T9NI0vTZNr1G8OMzyXvGvWvVf7Z_RIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760861794</pqid></control><display><type>article</type><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</creator><creatorcontrib>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</creatorcontrib><description>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</description><identifier>ISSN: 1471-2407</identifier><identifier>EISSN: 1471-2407</identifier><identifier>DOI: 10.1186/s12885-015-1990-6</identifier><identifier>PMID: 26753564</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Carcinoma, Hepatocellular - chemically induced ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - pathology ; Care and treatment ; Cell Hypoxia - drug effects ; Cell Hypoxia - genetics ; Complications and side effects ; Development and progression ; Diagnosis ; Diethylnitrosamine - toxicity ; Disease Models, Animal ; eIF-2 Kinase - biosynthesis ; eIF-2 Kinase - genetics ; Endoplasmic Reticulum Stress - genetics ; Gene Expression Regulation, Neoplastic - drug effects ; Glycosaminoglycans - physiology ; Hep G2 Cells ; Hepatoma ; Humans ; Liver Neoplasms - chemically induced ; Liver Neoplasms - genetics ; Liver Neoplasms - pathology ; Mice ; Mice, Knockout ; Neovascularization, Pathologic - genetics ; Neovascularization, Pathologic - pathology ; Placenta Growth Factor ; Pregnancy Proteins - biosynthesis ; Pregnancy Proteins - genetics ; Tumor Microenvironment - genetics ; Tyrosine metabolism ; Unfolded Protein Response - genetics</subject><ispartof>BMC cancer, 2016-01, Vol.16 (9), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Vandewynckel et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</citedby><cites>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26753564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandewynckel, Yves-Paul</creatorcontrib><creatorcontrib>Laukens, Debby</creatorcontrib><creatorcontrib>Devisscher, Lindsey</creatorcontrib><creatorcontrib>Bogaerts, Eliene</creatorcontrib><creatorcontrib>Paridaens, Annelies</creatorcontrib><creatorcontrib>Van den Bussche, Anja</creatorcontrib><creatorcontrib>Raevens, Sarah</creatorcontrib><creatorcontrib>Verhelst, Xavier</creatorcontrib><creatorcontrib>Van Steenkiste, Christophe</creatorcontrib><creatorcontrib>Jonckx, Bart</creatorcontrib><creatorcontrib>Libbrecht, Louis</creatorcontrib><creatorcontrib>Geerts, Anja</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Van Vlierberghe, Hans</creatorcontrib><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><title>BMC cancer</title><addtitle>BMC Cancer</addtitle><description>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</description><subject>Animals</subject><subject>Carcinoma, Hepatocellular - chemically induced</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Care and treatment</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - genetics</subject><subject>Complications and side effects</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Diethylnitrosamine - toxicity</subject><subject>Disease Models, Animal</subject><subject>eIF-2 Kinase - biosynthesis</subject><subject>eIF-2 Kinase - genetics</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glycosaminoglycans - physiology</subject><subject>Hep G2 Cells</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Liver Neoplasms - chemically induced</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - pathology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neovascularization, Pathologic - genetics</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Placenta Growth Factor</subject><subject>Pregnancy Proteins - biosynthesis</subject><subject>Pregnancy Proteins - genetics</subject><subject>Tumor Microenvironment - genetics</subject><subject>Tyrosine metabolism</subject><subject>Unfolded Protein Response - genetics</subject><issn>1471-2407</issn><issn>1471-2407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkk2L1TAYhYsozjj6A9xIQBBddEzaNEk3wjD4MTCg-LEO703f3kbSpCapM3fvD7fljsO9IFkkJM858J6conjO6DljSrxNrFKqKSlrSta2tBQPilPGJSsrTuXDg_NJ8SSln5Qyqah6XJxUQjZ1I_hp8eeLA4M-gyPbGG7yQHowOURi_WA3NtvgyRi62UHGRPKAy0PGODnYkQ3mG0RPht0Ubi0Q8B2ZfR9chx2ZYshoPYmYpuDTqiMDTpCDQecWv0gMRGN9GOFp8agHl_DZ3X5W_Pjw_vvlp_L688ery4vr0jQ1yyXrgSqsWNtVUHHRARrTVj0zfY0dGFobrhQK0UhQnZJC9gIkMBB133LKTH1WvNv7TvNmxG6dO4LTU7QjxJ0OYPXxi7eD3obfmksqZSUWg9d3BjH8mjFlPdq0zgMew5w0k4IqwWTLF_TlHt2CQ22XWBZHs-L6gnOmKt7SdqHO_0Mtq8PRmuCxt8v9keDNkWBhMt7mLcwp6atvX4_ZVwfsgODykIKb109NxyDbgyaGlCL295Ewqtem6X3T9NI0vTZNr1G8OMzyXvGvWvVf7Z_RIQ</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Vandewynckel, Yves-Paul</creator><creator>Laukens, Debby</creator><creator>Devisscher, Lindsey</creator><creator>Bogaerts, Eliene</creator><creator>Paridaens, Annelies</creator><creator>Van den Bussche, Anja</creator><creator>Raevens, Sarah</creator><creator>Verhelst, Xavier</creator><creator>Van Steenkiste, Christophe</creator><creator>Jonckx, Bart</creator><creator>Libbrecht, Louis</creator><creator>Geerts, Anja</creator><creator>Carmeliet, Peter</creator><creator>Van Vlierberghe, Hans</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160111</creationdate><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><author>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Carcinoma, Hepatocellular - chemically induced</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Care and treatment</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - genetics</topic><topic>Complications and side effects</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Diethylnitrosamine - toxicity</topic><topic>Disease Models, Animal</topic><topic>eIF-2 Kinase - biosynthesis</topic><topic>eIF-2 Kinase - genetics</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glycosaminoglycans - physiology</topic><topic>Hep G2 Cells</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Liver Neoplasms - chemically induced</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - pathology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neovascularization, Pathologic - genetics</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Placenta Growth Factor</topic><topic>Pregnancy Proteins - biosynthesis</topic><topic>Pregnancy Proteins - genetics</topic><topic>Tumor Microenvironment - genetics</topic><topic>Tyrosine metabolism</topic><topic>Unfolded Protein Response - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandewynckel, Yves-Paul</creatorcontrib><creatorcontrib>Laukens, Debby</creatorcontrib><creatorcontrib>Devisscher, Lindsey</creatorcontrib><creatorcontrib>Bogaerts, Eliene</creatorcontrib><creatorcontrib>Paridaens, Annelies</creatorcontrib><creatorcontrib>Van den Bussche, Anja</creatorcontrib><creatorcontrib>Raevens, Sarah</creatorcontrib><creatorcontrib>Verhelst, Xavier</creatorcontrib><creatorcontrib>Van Steenkiste, Christophe</creatorcontrib><creatorcontrib>Jonckx, Bart</creatorcontrib><creatorcontrib>Libbrecht, Louis</creatorcontrib><creatorcontrib>Geerts, Anja</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Van Vlierberghe, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandewynckel, Yves-Paul</au><au>Laukens, Debby</au><au>Devisscher, Lindsey</au><au>Bogaerts, Eliene</au><au>Paridaens, Annelies</au><au>Van den Bussche, Anja</au><au>Raevens, Sarah</au><au>Verhelst, Xavier</au><au>Van Steenkiste, Christophe</au><au>Jonckx, Bart</au><au>Libbrecht, Louis</au><au>Geerts, Anja</au><au>Carmeliet, Peter</au><au>Van Vlierberghe, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</atitle><jtitle>BMC cancer</jtitle><addtitle>BMC Cancer</addtitle><date>2016-01-11</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1471-2407</issn><eissn>1471-2407</eissn><abstract>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26753564</pmid><doi>10.1186/s12885-015-1990-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2407
ispartof BMC cancer, 2016-01, Vol.16 (9), p.9-9, Article 9
issn 1471-2407
1471-2407
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707726
source Publicly Available Content Database; PubMed Central
subjects Animals
Carcinoma, Hepatocellular - chemically induced
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - pathology
Care and treatment
Cell Hypoxia - drug effects
Cell Hypoxia - genetics
Complications and side effects
Development and progression
Diagnosis
Diethylnitrosamine - toxicity
Disease Models, Animal
eIF-2 Kinase - biosynthesis
eIF-2 Kinase - genetics
Endoplasmic Reticulum Stress - genetics
Gene Expression Regulation, Neoplastic - drug effects
Glycosaminoglycans - physiology
Hep G2 Cells
Hepatoma
Humans
Liver Neoplasms - chemically induced
Liver Neoplasms - genetics
Liver Neoplasms - pathology
Mice
Mice, Knockout
Neovascularization, Pathologic - genetics
Neovascularization, Pathologic - pathology
Placenta Growth Factor
Pregnancy Proteins - biosynthesis
Pregnancy Proteins - genetics
Tumor Microenvironment - genetics
Tyrosine metabolism
Unfolded Protein Response - genetics
title Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Placental%20growth%20factor%20inhibition%20modulates%20the%20interplay%20between%20hypoxia%20and%20unfolded%20protein%20response%20in%20hepatocellular%20carcinoma&rft.jtitle=BMC%20cancer&rft.au=Vandewynckel,%20Yves-Paul&rft.date=2016-01-11&rft.volume=16&rft.issue=9&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1471-2407&rft.eissn=1471-2407&rft_id=info:doi/10.1186/s12885-015-1990-6&rft_dat=%3Cgale_pubme%3EA441824909%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760861794&rft_id=info:pmid/26753564&rft_galeid=A441824909&rfr_iscdi=true