Loading…
Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remai...
Saved in:
Published in: | BMC cancer 2016-01, Vol.16 (9), p.9-9, Article 9 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3 |
container_end_page | 9 |
container_issue | 9 |
container_start_page | 9 |
container_title | BMC cancer |
container_volume | 16 |
creator | Vandewynckel, Yves-Paul Laukens, Debby Devisscher, Lindsey Bogaerts, Eliene Paridaens, Annelies Van den Bussche, Anja Raevens, Sarah Verhelst, Xavier Van Steenkiste, Christophe Jonckx, Bart Libbrecht, Louis Geerts, Anja Carmeliet, Peter Van Vlierberghe, Hans |
description | Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses.
PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells.
Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells.
PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature. |
doi_str_mv | 10.1186/s12885-015-1990-6 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441824909</galeid><sourcerecordid>A441824909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</originalsourceid><addsrcrecordid>eNptkk2L1TAYhYsozjj6A9xIQBBddEzaNEk3wjD4MTCg-LEO703f3kbSpCapM3fvD7fljsO9IFkkJM858J6conjO6DljSrxNrFKqKSlrSta2tBQPilPGJSsrTuXDg_NJ8SSln5Qyqah6XJxUQjZ1I_hp8eeLA4M-gyPbGG7yQHowOURi_WA3NtvgyRi62UHGRPKAy0PGODnYkQ3mG0RPht0Ubi0Q8B2ZfR9chx2ZYshoPYmYpuDTqiMDTpCDQecWv0gMRGN9GOFp8agHl_DZ3X5W_Pjw_vvlp_L688ery4vr0jQ1yyXrgSqsWNtVUHHRARrTVj0zfY0dGFobrhQK0UhQnZJC9gIkMBB133LKTH1WvNv7TvNmxG6dO4LTU7QjxJ0OYPXxi7eD3obfmksqZSUWg9d3BjH8mjFlPdq0zgMew5w0k4IqwWTLF_TlHt2CQ22XWBZHs-L6gnOmKt7SdqHO_0Mtq8PRmuCxt8v9keDNkWBhMt7mLcwp6atvX4_ZVwfsgODykIKb109NxyDbgyaGlCL295Ewqtem6X3T9NI0vTZNr1G8OMzyXvGvWvVf7Z_RIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760861794</pqid></control><display><type>article</type><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</creator><creatorcontrib>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</creatorcontrib><description>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses.
PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells.
Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells.
PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</description><identifier>ISSN: 1471-2407</identifier><identifier>EISSN: 1471-2407</identifier><identifier>DOI: 10.1186/s12885-015-1990-6</identifier><identifier>PMID: 26753564</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Carcinoma, Hepatocellular - chemically induced ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - pathology ; Care and treatment ; Cell Hypoxia - drug effects ; Cell Hypoxia - genetics ; Complications and side effects ; Development and progression ; Diagnosis ; Diethylnitrosamine - toxicity ; Disease Models, Animal ; eIF-2 Kinase - biosynthesis ; eIF-2 Kinase - genetics ; Endoplasmic Reticulum Stress - genetics ; Gene Expression Regulation, Neoplastic - drug effects ; Glycosaminoglycans - physiology ; Hep G2 Cells ; Hepatoma ; Humans ; Liver Neoplasms - chemically induced ; Liver Neoplasms - genetics ; Liver Neoplasms - pathology ; Mice ; Mice, Knockout ; Neovascularization, Pathologic - genetics ; Neovascularization, Pathologic - pathology ; Placenta Growth Factor ; Pregnancy Proteins - biosynthesis ; Pregnancy Proteins - genetics ; Tumor Microenvironment - genetics ; Tyrosine metabolism ; Unfolded Protein Response - genetics</subject><ispartof>BMC cancer, 2016-01, Vol.16 (9), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Vandewynckel et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</citedby><cites>FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26753564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandewynckel, Yves-Paul</creatorcontrib><creatorcontrib>Laukens, Debby</creatorcontrib><creatorcontrib>Devisscher, Lindsey</creatorcontrib><creatorcontrib>Bogaerts, Eliene</creatorcontrib><creatorcontrib>Paridaens, Annelies</creatorcontrib><creatorcontrib>Van den Bussche, Anja</creatorcontrib><creatorcontrib>Raevens, Sarah</creatorcontrib><creatorcontrib>Verhelst, Xavier</creatorcontrib><creatorcontrib>Van Steenkiste, Christophe</creatorcontrib><creatorcontrib>Jonckx, Bart</creatorcontrib><creatorcontrib>Libbrecht, Louis</creatorcontrib><creatorcontrib>Geerts, Anja</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Van Vlierberghe, Hans</creatorcontrib><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><title>BMC cancer</title><addtitle>BMC Cancer</addtitle><description>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses.
PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells.
Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells.
PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</description><subject>Animals</subject><subject>Carcinoma, Hepatocellular - chemically induced</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Care and treatment</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - genetics</subject><subject>Complications and side effects</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Diethylnitrosamine - toxicity</subject><subject>Disease Models, Animal</subject><subject>eIF-2 Kinase - biosynthesis</subject><subject>eIF-2 Kinase - genetics</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glycosaminoglycans - physiology</subject><subject>Hep G2 Cells</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Liver Neoplasms - chemically induced</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - pathology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neovascularization, Pathologic - genetics</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Placenta Growth Factor</subject><subject>Pregnancy Proteins - biosynthesis</subject><subject>Pregnancy Proteins - genetics</subject><subject>Tumor Microenvironment - genetics</subject><subject>Tyrosine metabolism</subject><subject>Unfolded Protein Response - genetics</subject><issn>1471-2407</issn><issn>1471-2407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkk2L1TAYhYsozjj6A9xIQBBddEzaNEk3wjD4MTCg-LEO703f3kbSpCapM3fvD7fljsO9IFkkJM858J6conjO6DljSrxNrFKqKSlrSta2tBQPilPGJSsrTuXDg_NJ8SSln5Qyqah6XJxUQjZ1I_hp8eeLA4M-gyPbGG7yQHowOURi_WA3NtvgyRi62UHGRPKAy0PGODnYkQ3mG0RPht0Ubi0Q8B2ZfR9chx2ZYshoPYmYpuDTqiMDTpCDQecWv0gMRGN9GOFp8agHl_DZ3X5W_Pjw_vvlp_L688ery4vr0jQ1yyXrgSqsWNtVUHHRARrTVj0zfY0dGFobrhQK0UhQnZJC9gIkMBB133LKTH1WvNv7TvNmxG6dO4LTU7QjxJ0OYPXxi7eD3obfmksqZSUWg9d3BjH8mjFlPdq0zgMew5w0k4IqwWTLF_TlHt2CQ22XWBZHs-L6gnOmKt7SdqHO_0Mtq8PRmuCxt8v9keDNkWBhMt7mLcwp6atvX4_ZVwfsgODykIKb109NxyDbgyaGlCL295Ewqtem6X3T9NI0vTZNr1G8OMzyXvGvWvVf7Z_RIQ</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Vandewynckel, Yves-Paul</creator><creator>Laukens, Debby</creator><creator>Devisscher, Lindsey</creator><creator>Bogaerts, Eliene</creator><creator>Paridaens, Annelies</creator><creator>Van den Bussche, Anja</creator><creator>Raevens, Sarah</creator><creator>Verhelst, Xavier</creator><creator>Van Steenkiste, Christophe</creator><creator>Jonckx, Bart</creator><creator>Libbrecht, Louis</creator><creator>Geerts, Anja</creator><creator>Carmeliet, Peter</creator><creator>Van Vlierberghe, Hans</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160111</creationdate><title>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</title><author>Vandewynckel, Yves-Paul ; Laukens, Debby ; Devisscher, Lindsey ; Bogaerts, Eliene ; Paridaens, Annelies ; Van den Bussche, Anja ; Raevens, Sarah ; Verhelst, Xavier ; Van Steenkiste, Christophe ; Jonckx, Bart ; Libbrecht, Louis ; Geerts, Anja ; Carmeliet, Peter ; Van Vlierberghe, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Carcinoma, Hepatocellular - chemically induced</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Care and treatment</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - genetics</topic><topic>Complications and side effects</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Diethylnitrosamine - toxicity</topic><topic>Disease Models, Animal</topic><topic>eIF-2 Kinase - biosynthesis</topic><topic>eIF-2 Kinase - genetics</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glycosaminoglycans - physiology</topic><topic>Hep G2 Cells</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Liver Neoplasms - chemically induced</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - pathology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neovascularization, Pathologic - genetics</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Placenta Growth Factor</topic><topic>Pregnancy Proteins - biosynthesis</topic><topic>Pregnancy Proteins - genetics</topic><topic>Tumor Microenvironment - genetics</topic><topic>Tyrosine metabolism</topic><topic>Unfolded Protein Response - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandewynckel, Yves-Paul</creatorcontrib><creatorcontrib>Laukens, Debby</creatorcontrib><creatorcontrib>Devisscher, Lindsey</creatorcontrib><creatorcontrib>Bogaerts, Eliene</creatorcontrib><creatorcontrib>Paridaens, Annelies</creatorcontrib><creatorcontrib>Van den Bussche, Anja</creatorcontrib><creatorcontrib>Raevens, Sarah</creatorcontrib><creatorcontrib>Verhelst, Xavier</creatorcontrib><creatorcontrib>Van Steenkiste, Christophe</creatorcontrib><creatorcontrib>Jonckx, Bart</creatorcontrib><creatorcontrib>Libbrecht, Louis</creatorcontrib><creatorcontrib>Geerts, Anja</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Van Vlierberghe, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandewynckel, Yves-Paul</au><au>Laukens, Debby</au><au>Devisscher, Lindsey</au><au>Bogaerts, Eliene</au><au>Paridaens, Annelies</au><au>Van den Bussche, Anja</au><au>Raevens, Sarah</au><au>Verhelst, Xavier</au><au>Van Steenkiste, Christophe</au><au>Jonckx, Bart</au><au>Libbrecht, Louis</au><au>Geerts, Anja</au><au>Carmeliet, Peter</au><au>Van Vlierberghe, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma</atitle><jtitle>BMC cancer</jtitle><addtitle>BMC Cancer</addtitle><date>2016-01-11</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1471-2407</issn><eissn>1471-2407</eissn><abstract>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses.
PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells.
Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells.
PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26753564</pmid><doi>10.1186/s12885-015-1990-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2407 |
ispartof | BMC cancer, 2016-01, Vol.16 (9), p.9-9, Article 9 |
issn | 1471-2407 1471-2407 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707726 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Carcinoma, Hepatocellular - chemically induced Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - pathology Care and treatment Cell Hypoxia - drug effects Cell Hypoxia - genetics Complications and side effects Development and progression Diagnosis Diethylnitrosamine - toxicity Disease Models, Animal eIF-2 Kinase - biosynthesis eIF-2 Kinase - genetics Endoplasmic Reticulum Stress - genetics Gene Expression Regulation, Neoplastic - drug effects Glycosaminoglycans - physiology Hep G2 Cells Hepatoma Humans Liver Neoplasms - chemically induced Liver Neoplasms - genetics Liver Neoplasms - pathology Mice Mice, Knockout Neovascularization, Pathologic - genetics Neovascularization, Pathologic - pathology Placenta Growth Factor Pregnancy Proteins - biosynthesis Pregnancy Proteins - genetics Tumor Microenvironment - genetics Tyrosine metabolism Unfolded Protein Response - genetics |
title | Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Placental%20growth%20factor%20inhibition%20modulates%20the%20interplay%20between%20hypoxia%20and%20unfolded%20protein%20response%20in%20hepatocellular%20carcinoma&rft.jtitle=BMC%20cancer&rft.au=Vandewynckel,%20Yves-Paul&rft.date=2016-01-11&rft.volume=16&rft.issue=9&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1471-2407&rft.eissn=1471-2407&rft_id=info:doi/10.1186/s12885-015-1990-6&rft_dat=%3Cgale_pubme%3EA441824909%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-1fa08e219d2a246daecc92f1cf3edac03c488e6657a8d8767f6a7a1a63f9401c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760861794&rft_id=info:pmid/26753564&rft_galeid=A441824909&rfr_iscdi=true |