Loading…
Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector
In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previous...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2016-01, Vol.408 (3), p.761-774 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3 |
container_end_page | 774 |
container_issue | 3 |
container_start_page | 761 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 408 |
creator | Rojalin, Tatu Kurki, Lauri Laaksonen, Timo Viitala, Tapani Kostamovaara, Juha Gordon, Keith C Galvis, Leonardo Wachsmann-Hogiu, Sebastian Strachan, Clare J Yliperttula, Marjo |
description | In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences. Graphical abstract Time-resolved Raman measurement of a pharmaceutical sample using the complementary metal-oxide semiconductor (CMOS) single photon avalanche diode (SPAD) detector technology |
doi_str_mv | 10.1007/s00216-015-9156-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4709379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760863503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqXwAGzAEpvpwuCf2Ek2SNVAAamoiKFry-PczLhK7NR2RvSleEYcTRkVFsDKP_c7x7rXpyieU_KaElK9iYQwKjGhAjdUSCwfFMdU0hozKcjDw75kR8WTGK9JBmsqHxdHuV42lFbHxY_zfvIBogFnAMdpHPMhQouSHQDnve93-fRVD9qhOIJJwUfjx1vkOzRudRi0gSlZo_uIpmjdBhk_jD0M4JIOt2iApHvsv9sWUITBGu_aySQf0GL5-XJ1imZND3jc-uQd0jvda2e2gFrrs2Sx-nL27hS1kGAWPS0edfkleHa3nhRX5--_LT_ii8sPn5ZnF9hIWSXMGGuFNmxd87Zdd0ArTRoiZCfWlWTciJKUnDFhGsqMgbrjAngt10YC0NYAPyne7n3HaT1AvnEp6F6NwQ65KeW1Vb9XnN2qjd-psiINr5pssLgzCP5mgpjUYPOQ-9wc-CkqWldVzeuyKf-NZjsmeEn_w7WSpJZcEJ7RV3-g134KLg8tUzVlOQp8NqR7yuRvjQG6Q4uUqDljap8xlaOj5owpmTUv7s_moPgVqgywPRBzyW0g3Hv6L64v96JOe6U3wUZ1tWKESkJIySgV_CdxNOmN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781215839</pqid></control><display><type>article</type><title>Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector</title><source>Springer Link</source><creator>Rojalin, Tatu ; Kurki, Lauri ; Laaksonen, Timo ; Viitala, Tapani ; Kostamovaara, Juha ; Gordon, Keith C ; Galvis, Leonardo ; Wachsmann-Hogiu, Sebastian ; Strachan, Clare J ; Yliperttula, Marjo</creator><creatorcontrib>Rojalin, Tatu ; Kurki, Lauri ; Laaksonen, Timo ; Viitala, Tapani ; Kostamovaara, Juha ; Gordon, Keith C ; Galvis, Leonardo ; Wachsmann-Hogiu, Sebastian ; Strachan, Clare J ; Yliperttula, Marjo</creatorcontrib><description>In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences. Graphical abstract Time-resolved Raman measurement of a pharmaceutical sample using the complementary metal-oxide semiconductor (CMOS) single photon avalanche diode (SPAD) detector technology</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-015-9156-6</identifier><identifier>PMID: 26549117</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Biofilms ; Caffeine ; Characterization and Evaluation of Materials ; Chemical research ; Chemistry ; Chemistry and Materials Science ; CMOS ; Data processing ; Detectors ; Drugs ; Electrical engineering ; energy ; Fluorescence ; fluorescence emission spectroscopy ; Food Science ; Fractionation ; gastric acid ; indomethacin ; Laboratory Medicine ; Lasers ; Life sciences ; Light sources ; Mathematical analysis ; Metal oxide semiconductors ; Metals - chemistry ; Monitoring/Environmental Analysis ; Nanospectroscopy ; Oxides - chemistry ; Pharmaceutical Preparations - chemistry ; Pharmaceuticals ; photoluminescence ; R&D ; Raman spectra ; Raman spectroscopy ; Research & development ; Research Paper ; Semiconductors ; Sensors ; Spectroscopy ; Spectrum Analysis, Raman - instrumentation ; Spectrum Analysis, Raman - methods</subject><ispartof>Analytical and bioanalytical chemistry, 2016-01, Vol.408 (3), p.761-774</ispartof><rights>The Author(s) 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3</citedby><cites>FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26549117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojalin, Tatu</creatorcontrib><creatorcontrib>Kurki, Lauri</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Viitala, Tapani</creatorcontrib><creatorcontrib>Kostamovaara, Juha</creatorcontrib><creatorcontrib>Gordon, Keith C</creatorcontrib><creatorcontrib>Galvis, Leonardo</creatorcontrib><creatorcontrib>Wachsmann-Hogiu, Sebastian</creatorcontrib><creatorcontrib>Strachan, Clare J</creatorcontrib><creatorcontrib>Yliperttula, Marjo</creatorcontrib><title>Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences. Graphical abstract Time-resolved Raman measurement of a pharmaceutical sample using the complementary metal-oxide semiconductor (CMOS) single photon avalanche diode (SPAD) detector technology</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Caffeine</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Data processing</subject><subject>Detectors</subject><subject>Drugs</subject><subject>Electrical engineering</subject><subject>energy</subject><subject>Fluorescence</subject><subject>fluorescence emission spectroscopy</subject><subject>Food Science</subject><subject>Fractionation</subject><subject>gastric acid</subject><subject>indomethacin</subject><subject>Laboratory Medicine</subject><subject>Lasers</subject><subject>Life sciences</subject><subject>Light sources</subject><subject>Mathematical analysis</subject><subject>Metal oxide semiconductors</subject><subject>Metals - chemistry</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanospectroscopy</subject><subject>Oxides - chemistry</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceuticals</subject><subject>photoluminescence</subject><subject>R&D</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Research & development</subject><subject>Research Paper</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Spectrum Analysis, Raman - instrumentation</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1DAUhSMEoqXwAGzAEpvpwuCf2Ek2SNVAAamoiKFry-PczLhK7NR2RvSleEYcTRkVFsDKP_c7x7rXpyieU_KaElK9iYQwKjGhAjdUSCwfFMdU0hozKcjDw75kR8WTGK9JBmsqHxdHuV42lFbHxY_zfvIBogFnAMdpHPMhQouSHQDnve93-fRVD9qhOIJJwUfjx1vkOzRudRi0gSlZo_uIpmjdBhk_jD0M4JIOt2iApHvsv9sWUITBGu_aySQf0GL5-XJ1imZND3jc-uQd0jvda2e2gFrrs2Sx-nL27hS1kGAWPS0edfkleHa3nhRX5--_LT_ii8sPn5ZnF9hIWSXMGGuFNmxd87Zdd0ArTRoiZCfWlWTciJKUnDFhGsqMgbrjAngt10YC0NYAPyne7n3HaT1AvnEp6F6NwQ65KeW1Vb9XnN2qjd-psiINr5pssLgzCP5mgpjUYPOQ-9wc-CkqWldVzeuyKf-NZjsmeEn_w7WSpJZcEJ7RV3-g134KLg8tUzVlOQp8NqR7yuRvjQG6Q4uUqDljap8xlaOj5owpmTUv7s_moPgVqgywPRBzyW0g3Hv6L64v96JOe6U3wUZ1tWKESkJIySgV_CdxNOmN</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rojalin, Tatu</creator><creator>Kurki, Lauri</creator><creator>Laaksonen, Timo</creator><creator>Viitala, Tapani</creator><creator>Kostamovaara, Juha</creator><creator>Gordon, Keith C</creator><creator>Galvis, Leonardo</creator><creator>Wachsmann-Hogiu, Sebastian</creator><creator>Strachan, Clare J</creator><creator>Yliperttula, Marjo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7SU</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector</title><author>Rojalin, Tatu ; Kurki, Lauri ; Laaksonen, Timo ; Viitala, Tapani ; Kostamovaara, Juha ; Gordon, Keith C ; Galvis, Leonardo ; Wachsmann-Hogiu, Sebastian ; Strachan, Clare J ; Yliperttula, Marjo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Caffeine</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Data processing</topic><topic>Detectors</topic><topic>Drugs</topic><topic>Electrical engineering</topic><topic>energy</topic><topic>Fluorescence</topic><topic>fluorescence emission spectroscopy</topic><topic>Food Science</topic><topic>Fractionation</topic><topic>gastric acid</topic><topic>indomethacin</topic><topic>Laboratory Medicine</topic><topic>Lasers</topic><topic>Life sciences</topic><topic>Light sources</topic><topic>Mathematical analysis</topic><topic>Metal oxide semiconductors</topic><topic>Metals - chemistry</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanospectroscopy</topic><topic>Oxides - chemistry</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceuticals</topic><topic>photoluminescence</topic><topic>R&D</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Research & development</topic><topic>Research Paper</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Spectrum Analysis, Raman - instrumentation</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojalin, Tatu</creatorcontrib><creatorcontrib>Kurki, Lauri</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Viitala, Tapani</creatorcontrib><creatorcontrib>Kostamovaara, Juha</creatorcontrib><creatorcontrib>Gordon, Keith C</creatorcontrib><creatorcontrib>Galvis, Leonardo</creatorcontrib><creatorcontrib>Wachsmann-Hogiu, Sebastian</creatorcontrib><creatorcontrib>Strachan, Clare J</creatorcontrib><creatorcontrib>Yliperttula, Marjo</creatorcontrib><collection>AGRIS</collection><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojalin, Tatu</au><au>Kurki, Lauri</au><au>Laaksonen, Timo</au><au>Viitala, Tapani</au><au>Kostamovaara, Juha</au><au>Gordon, Keith C</au><au>Galvis, Leonardo</au><au>Wachsmann-Hogiu, Sebastian</au><au>Strachan, Clare J</au><au>Yliperttula, Marjo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>408</volume><issue>3</issue><spage>761</spage><epage>774</epage><pages>761-774</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences. Graphical abstract Time-resolved Raman measurement of a pharmaceutical sample using the complementary metal-oxide semiconductor (CMOS) single photon avalanche diode (SPAD) detector technology</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26549117</pmid><doi>10.1007/s00216-015-9156-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2016-01, Vol.408 (3), p.761-774 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4709379 |
source | Springer Link |
subjects | Analytical Chemistry Biochemistry Biofilms Caffeine Characterization and Evaluation of Materials Chemical research Chemistry Chemistry and Materials Science CMOS Data processing Detectors Drugs Electrical engineering energy Fluorescence fluorescence emission spectroscopy Food Science Fractionation gastric acid indomethacin Laboratory Medicine Lasers Life sciences Light sources Mathematical analysis Metal oxide semiconductors Metals - chemistry Monitoring/Environmental Analysis Nanospectroscopy Oxides - chemistry Pharmaceutical Preparations - chemistry Pharmaceuticals photoluminescence R&D Raman spectra Raman spectroscopy Research & development Research Paper Semiconductors Sensors Spectroscopy Spectrum Analysis, Raman - instrumentation Spectrum Analysis, Raman - methods |
title | Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-suppressed%20time-resolved%20Raman%20spectroscopy%20of%20pharmaceuticals%20using%20complementary%20metal-oxide%20semiconductor%20(CMOS)%20single-photon%20avalanche%20diode%20(SPAD)%20detector&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Rojalin,%20Tatu&rft.date=2016-01-01&rft.volume=408&rft.issue=3&rft.spage=761&rft.epage=774&rft.pages=761-774&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-015-9156-6&rft_dat=%3Cproquest_pubme%3E1760863503%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-222d5ac2b83ddbfe17a09056f5b7623c54043225c912cce8f35e386bc6ee1dce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781215839&rft_id=info:pmid/26549117&rfr_iscdi=true |