Loading…

Dioscorea bulbifera polysaccharide and cyclophosphamide combination enhances anti-cervical cancer effect and attenuates immunosuppression and oxidative stress in mice

Cyclophosphamide (CTX) is commonly used in cancer chemotherapy, which causes immunosuppression and tissue oxidative stress at high doses. As potential protective agents, some polysaccharides were shown to have anti-tumor, anti-inflammatory and/or anti-oxidant properties. This study explored potentia...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-01, Vol.6 (1), p.19185-19185, Article 19185
Main Authors: Cui, Hongxia, Li, Ting, Wang, Liping, Su, Yan, Xian, Cory J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyclophosphamide (CTX) is commonly used in cancer chemotherapy, which causes immunosuppression and tissue oxidative stress at high doses. As potential protective agents, some polysaccharides were shown to have anti-tumor, anti-inflammatory and/or anti-oxidant properties. This study explored potential effects of oral treatment of Dioscorea bulbifera polysaccharides (DBLP at 100 or 150 mg/kg) in U14 cervical tumor-bearing mice treated with CTX (25 mg/kg). While CTX suppressed tumor growth (65.4% inhibition) and DBLP alone also inhibited tumor (25.6% at 100 mg/kg or 37.6% at 150 mg/kg), CTX+DBLP combination produced tumor inhibition rates of 5.6 (for 100 mg/kg DBLP) or 9% (for 150 mg/kg) higher than CTX alone. While tumor itself and CTX treatment reduced thymus and/or spleen/body weight indices, DBLP alone or CTX + DBLP combination attenuated this reduction. DBLP lowered peripheral blood T-cell subpopulation CD 4+ /CD 8+ ratio and DBLP+CTX combination attenuated CTX effect in lifting CD 4+ /CD 8+ ratio. Tumor itself and CTX treatment heightened oxidative stress (with decreased superoxide dismutase but increased lactate dehydrogenase and malondialdehyde levels in serum and tissues), which was attenuated by DBLP treatment and DBLP+CTX combination suppressed CTX-induced oxidative stress. Combination use of DBLP with CTX can potentially enhance CTX anti-tumor effect and can attenuate CTX-induced immunosuppression and oxidative stress in U14 cervical tumor-bearing mice.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep19185