Loading…
Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules
Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientatio...
Saved in:
Published in: | Molecular biology of the cell 2015-11, Vol.26 (22), p.3985-3998 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163 |
container_end_page | 3998 |
container_issue | 22 |
container_start_page | 3985 |
container_title | Molecular biology of the cell |
container_volume | 26 |
creator | Zaytsev, Anatoly V Grishchuk, Ekaterina L |
description | Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms. |
doi_str_mv | 10.1091/mbc.e15-06-0384 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4710231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1731783532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</originalsourceid><addsrcrecordid>eNpVkc1u1TAQhSMEoqWwZoe8ZJPWv7GzQYKqUKRKbGBtOc64McT2xXaudN-kj4uvWqp2NSPNN2fm6HTde4LPCR7JRZjsORDR46HHTPEX3SkZ2dhzoYaXrcdi7Img_KR7U8pvjAnng3zdndCBUy5HddrdfTHFWxTALib6EpBLGU0-ZQ-xmupTRMmh4GuqDbNLTiGVFKAgX9Aup72fYUbTAdUF0B8foSa7pAzoFhpV8wGZOCMfZ19s9sFHUwHVLce0h3yUfroTvM2pbtO2QnnbvXJmLfDuoZ51v75e_by87m9-fPt--fmmtwKL2lOwlLGRjDN2BoPEygJ2RBgpRscpo4NSWNrZsVFYxTmVyloyEEIddooM7Kz7dK-726YAs222s1n1rj1r8kEn4_XzSfSLvk17zSXBlJEm8PFBIKe_G5SqQ_MK62oipK1oIhmRiglGG3pxjzabpWRwj2cI1sc8dctTXxGh8aCPebaND0-_e-T_B8j-AXScoaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731783532</pqid></control><display><type>article</type><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><source>PubMed Central</source><creator>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L</creator><contributor>Mogilner, Alex</contributor><creatorcontrib>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L ; Mogilner, Alex</creatorcontrib><description>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.e15-06-0384</identifier><identifier>PMID: 26424798</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Chromosome Segregation - physiology ; Chromosomes ; HeLa Cells ; Humans ; Kinetochores - metabolism ; Kinetochores - ultrastructure ; Microtubules - genetics ; Microtubules - metabolism ; Mitosis - genetics ; Mitosis - physiology ; Models, Genetic ; Spindle Apparatus - genetics ; Spindle Poles - genetics</subject><ispartof>Molecular biology of the cell, 2015-11, Vol.26 (22), p.3985-3998</ispartof><rights>2015 Zaytsev and Grishchuk. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Zaytsev and Grishchuk. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</citedby><cites>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710231/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710231/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26424798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mogilner, Alex</contributor><creatorcontrib>Zaytsev, Anatoly V</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</description><subject>Animals</subject><subject>Chromosome Segregation - physiology</subject><subject>Chromosomes</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Kinetochores - ultrastructure</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>Mitosis - genetics</subject><subject>Mitosis - physiology</subject><subject>Models, Genetic</subject><subject>Spindle Apparatus - genetics</subject><subject>Spindle Poles - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u1TAQhSMEoqWwZoe8ZJPWv7GzQYKqUKRKbGBtOc64McT2xXaudN-kj4uvWqp2NSPNN2fm6HTde4LPCR7JRZjsORDR46HHTPEX3SkZ2dhzoYaXrcdi7Img_KR7U8pvjAnng3zdndCBUy5HddrdfTHFWxTALib6EpBLGU0-ZQ-xmupTRMmh4GuqDbNLTiGVFKAgX9Aup72fYUbTAdUF0B8foSa7pAzoFhpV8wGZOCMfZ19s9sFHUwHVLce0h3yUfroTvM2pbtO2QnnbvXJmLfDuoZ51v75e_by87m9-fPt--fmmtwKL2lOwlLGRjDN2BoPEygJ2RBgpRscpo4NSWNrZsVFYxTmVyloyEEIddooM7Kz7dK-726YAs222s1n1rj1r8kEn4_XzSfSLvk17zSXBlJEm8PFBIKe_G5SqQ_MK62oipK1oIhmRiglGG3pxjzabpWRwj2cI1sc8dctTXxGh8aCPebaND0-_e-T_B8j-AXScoaA</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Zaytsev, Anatoly V</creator><creator>Grishchuk, Ekaterina L</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151105</creationdate><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><author>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Chromosome Segregation - physiology</topic><topic>Chromosomes</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Kinetochores - ultrastructure</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>Mitosis - genetics</topic><topic>Mitosis - physiology</topic><topic>Models, Genetic</topic><topic>Spindle Apparatus - genetics</topic><topic>Spindle Poles - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaytsev, Anatoly V</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaytsev, Anatoly V</au><au>Grishchuk, Ekaterina L</au><au>Mogilner, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-11-05</date><risdate>2015</risdate><volume>26</volume><issue>22</issue><spage>3985</spage><epage>3998</epage><pages>3985-3998</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>26424798</pmid><doi>10.1091/mbc.e15-06-0384</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2015-11, Vol.26 (22), p.3985-3998 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4710231 |
source | PubMed Central |
subjects | Animals Chromosome Segregation - physiology Chromosomes HeLa Cells Humans Kinetochores - metabolism Kinetochores - ultrastructure Microtubules - genetics Microtubules - metabolism Mitosis - genetics Mitosis - physiology Models, Genetic Spindle Apparatus - genetics Spindle Poles - genetics |
title | Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20mechanism%20for%20biorientation%20of%20mitotic%20chromosomes%20is%20provided%20by%20the%20kinetochore%20geometry%20and%20indiscriminate%20turnover%20of%20kinetochore%20microtubules&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Zaytsev,%20Anatoly%20V&rft.date=2015-11-05&rft.volume=26&rft.issue=22&rft.spage=3985&rft.epage=3998&rft.pages=3985-3998&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.e15-06-0384&rft_dat=%3Cproquest_pubme%3E1731783532%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731783532&rft_id=info:pmid/26424798&rfr_iscdi=true |