Loading…

Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules

Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientatio...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2015-11, Vol.26 (22), p.3985-3998
Main Authors: Zaytsev, Anatoly V, Grishchuk, Ekaterina L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163
cites cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163
container_end_page 3998
container_issue 22
container_start_page 3985
container_title Molecular biology of the cell
container_volume 26
creator Zaytsev, Anatoly V
Grishchuk, Ekaterina L
description Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.
doi_str_mv 10.1091/mbc.e15-06-0384
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4710231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1731783532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</originalsourceid><addsrcrecordid>eNpVkc1u1TAQhSMEoqWwZoe8ZJPWv7GzQYKqUKRKbGBtOc64McT2xXaudN-kj4uvWqp2NSPNN2fm6HTde4LPCR7JRZjsORDR46HHTPEX3SkZ2dhzoYaXrcdi7Img_KR7U8pvjAnng3zdndCBUy5HddrdfTHFWxTALib6EpBLGU0-ZQ-xmupTRMmh4GuqDbNLTiGVFKAgX9Aup72fYUbTAdUF0B8foSa7pAzoFhpV8wGZOCMfZ19s9sFHUwHVLce0h3yUfroTvM2pbtO2QnnbvXJmLfDuoZ51v75e_by87m9-fPt--fmmtwKL2lOwlLGRjDN2BoPEygJ2RBgpRscpo4NSWNrZsVFYxTmVyloyEEIddooM7Kz7dK-726YAs222s1n1rj1r8kEn4_XzSfSLvk17zSXBlJEm8PFBIKe_G5SqQ_MK62oipK1oIhmRiglGG3pxjzabpWRwj2cI1sc8dctTXxGh8aCPebaND0-_e-T_B8j-AXScoaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731783532</pqid></control><display><type>article</type><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><source>PubMed Central</source><creator>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L</creator><contributor>Mogilner, Alex</contributor><creatorcontrib>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L ; Mogilner, Alex</creatorcontrib><description>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.e15-06-0384</identifier><identifier>PMID: 26424798</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Chromosome Segregation - physiology ; Chromosomes ; HeLa Cells ; Humans ; Kinetochores - metabolism ; Kinetochores - ultrastructure ; Microtubules - genetics ; Microtubules - metabolism ; Mitosis - genetics ; Mitosis - physiology ; Models, Genetic ; Spindle Apparatus - genetics ; Spindle Poles - genetics</subject><ispartof>Molecular biology of the cell, 2015-11, Vol.26 (22), p.3985-3998</ispartof><rights>2015 Zaytsev and Grishchuk. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2015 Zaytsev and Grishchuk. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</citedby><cites>FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710231/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710231/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26424798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mogilner, Alex</contributor><creatorcontrib>Zaytsev, Anatoly V</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</description><subject>Animals</subject><subject>Chromosome Segregation - physiology</subject><subject>Chromosomes</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Kinetochores - ultrastructure</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>Mitosis - genetics</subject><subject>Mitosis - physiology</subject><subject>Models, Genetic</subject><subject>Spindle Apparatus - genetics</subject><subject>Spindle Poles - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u1TAQhSMEoqWwZoe8ZJPWv7GzQYKqUKRKbGBtOc64McT2xXaudN-kj4uvWqp2NSPNN2fm6HTde4LPCR7JRZjsORDR46HHTPEX3SkZ2dhzoYaXrcdi7Img_KR7U8pvjAnng3zdndCBUy5HddrdfTHFWxTALib6EpBLGU0-ZQ-xmupTRMmh4GuqDbNLTiGVFKAgX9Aup72fYUbTAdUF0B8foSa7pAzoFhpV8wGZOCMfZ19s9sFHUwHVLce0h3yUfroTvM2pbtO2QnnbvXJmLfDuoZ51v75e_by87m9-fPt--fmmtwKL2lOwlLGRjDN2BoPEygJ2RBgpRscpo4NSWNrZsVFYxTmVyloyEEIddooM7Kz7dK-726YAs222s1n1rj1r8kEn4_XzSfSLvk17zSXBlJEm8PFBIKe_G5SqQ_MK62oipK1oIhmRiglGG3pxjzabpWRwj2cI1sc8dctTXxGh8aCPebaND0-_e-T_B8j-AXScoaA</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Zaytsev, Anatoly V</creator><creator>Grishchuk, Ekaterina L</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151105</creationdate><title>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</title><author>Zaytsev, Anatoly V ; Grishchuk, Ekaterina L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Chromosome Segregation - physiology</topic><topic>Chromosomes</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Kinetochores - ultrastructure</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>Mitosis - genetics</topic><topic>Mitosis - physiology</topic><topic>Models, Genetic</topic><topic>Spindle Apparatus - genetics</topic><topic>Spindle Poles - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaytsev, Anatoly V</creatorcontrib><creatorcontrib>Grishchuk, Ekaterina L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaytsev, Anatoly V</au><au>Grishchuk, Ekaterina L</au><au>Mogilner, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2015-11-05</date><risdate>2015</risdate><volume>26</volume><issue>22</issue><spage>3985</spage><epage>3998</epage><pages>3985-3998</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>26424798</pmid><doi>10.1091/mbc.e15-06-0384</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2015-11, Vol.26 (22), p.3985-3998
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4710231
source PubMed Central
subjects Animals
Chromosome Segregation - physiology
Chromosomes
HeLa Cells
Humans
Kinetochores - metabolism
Kinetochores - ultrastructure
Microtubules - genetics
Microtubules - metabolism
Mitosis - genetics
Mitosis - physiology
Models, Genetic
Spindle Apparatus - genetics
Spindle Poles - genetics
title Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20mechanism%20for%20biorientation%20of%20mitotic%20chromosomes%20is%20provided%20by%20the%20kinetochore%20geometry%20and%20indiscriminate%20turnover%20of%20kinetochore%20microtubules&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Zaytsev,%20Anatoly%20V&rft.date=2015-11-05&rft.volume=26&rft.issue=22&rft.spage=3985&rft.epage=3998&rft.pages=3985-3998&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.e15-06-0384&rft_dat=%3Cproquest_pubme%3E1731783532%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-2ec233919d0fa0e708ce0f15a759f423268807cdf395c844278cc16112f0f8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731783532&rft_id=info:pmid/26424798&rfr_iscdi=true