Loading…

Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus

Two forms of NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) at hippocampal CA1 synapses can be distinguished based on their sensitivity to inhibitors of protein kinase A (PKA). The PKA-dependent form requires multiple episodes of high-frequency stimulation (HFS) or theta burst stimuli...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2016-01, Vol.36 (2), p.622-631
Main Authors: Park, Pojeong, Sanderson, Thomas M, Amici, Mascia, Choi, Sun-Lim, Bortolotto, Zuner A, Zhuo, Min, Kaang, Bong-Kiun, Collingridge, Graham L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two forms of NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) at hippocampal CA1 synapses can be distinguished based on their sensitivity to inhibitors of protein kinase A (PKA). The PKA-dependent form requires multiple episodes of high-frequency stimulation (HFS) or theta burst stimuli (TBS) with a spacing between episodes in the order of minutes. To investigate the mechanism by which spaced episodes induce the PKA-dependent form of LTP, we have compared, in interleaved experiments, spaced (s) and compressed (c) TBS protocols in the rat CA1 synapses. We find that LTP induced by sTBS, but not that induced by cTBS, involves the insertion of calcium-permeable (CP) AMPARs, as assessed using pharmacological and electrophysiological criteria. Furthermore, a single TBS when paired with rolipram [4-(3-(cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one], to activate PKA, generates an LTP that also involves the insertion of CP-AMPARs. These data demonstrate that the involvement of CP-AMPARs in LTP is critically determined by the timing of the induction trigger and is associated specifically with the PKA-dependent form of LTP. Long-term potentiation is a family of synaptic mechanisms that are believed to be important for learning and memory. Two of the most extensively studied forms are triggered by the synaptic activation of NMDA receptors and expressed by changes in AMPA receptor function. They can be distinguished on the basis of their requirement for activation of a protein kinase, PKA. We show that the PKA-dependent form also involves the transient insertion of calcium-permeable AMPA receptors. These results have implications for relating synaptic plasticity to learning and memory and suggest a specific linkage between PKA activation and the rapid synaptic insertion of calcium-permeable AMPA receptors during long-term potentiation.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3625-15.2016