Loading…
Multiband RF pulses with improved performance via convex optimization
[Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and...
Saved in:
Published in: | Journal of magnetic resonance (1997) 2016-01, Vol.262, p.81-90 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143 |
container_end_page | 90 |
container_issue | |
container_start_page | 81 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 262 |
creator | Shang, Hong Larson, Peder E.Z. Kerr, Adam Reed, Galen Sukumar, Subramaniam Elkhaled, Adam Gordon, Jeremy W. Ohliger, Michael A. Pauly, John M. Lustig, Michael Vigneron, Daniel B. |
description | [Display omitted]
•Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS.
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested. |
doi_str_mv | 10.1016/j.jmr.2015.11.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780715002980</els_id><sourcerecordid>1793245000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</originalsourceid><addsrcrecordid>eNqNkV9r1jAUh4Mobnv1A3gjvfSm9ZykSVoEQcbmhIkgeh2y9NTlpW1q0nbqpzfznUNvxKscyPP75c_D2DOECgHVy321H2PFAWWFWAHCA3aM0KoSGqke_pqh1A3oI3aS0h4AUWp4zI640rIGJY7Z2ft1WPyVnbri43kxr0OiVNz45brw4xzDRl0xU-xDHO3kqNi8LVyYNvpWhHnxo_9hFx-mJ-xRb3P06d26Y5_Pzz6dXpSXH96-O31zWTop66W0Ta-t1I0QSta8I2o4d8il6lxrhRYOAVqbR-JNX6MEwZu2FdCRJa6wFjv2-tA7r1cjdY6mJdrBzNGPNn43wXrz987kr82XsJlao1L54B17cVcQw9eV0mJGnxwNg50orMmgbgWvJQD8B6qgUbWWmFE8oC6GlCL19zdCMLemzN5kU-bWlEE02VTOPP_zKfeJ32oy8OoAUP7QzVM0yXnKEjofyS2mC_4f9T8BJdGkBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760864751</pqid></control><display><type>article</type><title>Multiband RF pulses with improved performance via convex optimization</title><source>ScienceDirect Freedom Collection</source><creator>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</creator><creatorcontrib>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</creatorcontrib><description>[Display omitted]
•Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS.
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2015.11.010</identifier><identifier>PMID: 26754063</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Balancing ; Brain ; Calibration ; Carbon Isotopes ; Computational geometry ; Convex optimization ; Convexity ; Generalized flip angle ; Humans ; Improved pulse performance ; Lactates - chemistry ; Low pass filters ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Multiband ; Optimization ; Performance enhancement ; Phantoms, Imaging ; Protons ; Pyruvates - chemistry ; Radio Waves ; RF pulse design ; Saturation ; Shinnar–Le Roux algorithm ; Tradeoffs ; Urea - chemistry</subject><ispartof>Journal of magnetic resonance (1997), 2016-01, Vol.262, p.81-90</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</citedby><cites>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26754063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Larson, Peder E.Z.</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Reed, Galen</creatorcontrib><creatorcontrib>Sukumar, Subramaniam</creatorcontrib><creatorcontrib>Elkhaled, Adam</creatorcontrib><creatorcontrib>Gordon, Jeremy W.</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><title>Multiband RF pulses with improved performance via convex optimization</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>[Display omitted]
•Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS.
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Brain</subject><subject>Calibration</subject><subject>Carbon Isotopes</subject><subject>Computational geometry</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Generalized flip angle</subject><subject>Humans</subject><subject>Improved pulse performance</subject><subject>Lactates - chemistry</subject><subject>Low pass filters</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Multiband</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Phantoms, Imaging</subject><subject>Protons</subject><subject>Pyruvates - chemistry</subject><subject>Radio Waves</subject><subject>RF pulse design</subject><subject>Saturation</subject><subject>Shinnar–Le Roux algorithm</subject><subject>Tradeoffs</subject><subject>Urea - chemistry</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkV9r1jAUh4Mobnv1A3gjvfSm9ZykSVoEQcbmhIkgeh2y9NTlpW1q0nbqpzfznUNvxKscyPP75c_D2DOECgHVy321H2PFAWWFWAHCA3aM0KoSGqke_pqh1A3oI3aS0h4AUWp4zI640rIGJY7Z2ft1WPyVnbri43kxr0OiVNz45brw4xzDRl0xU-xDHO3kqNi8LVyYNvpWhHnxo_9hFx-mJ-xRb3P06d26Y5_Pzz6dXpSXH96-O31zWTop66W0Ta-t1I0QSta8I2o4d8il6lxrhRYOAVqbR-JNX6MEwZu2FdCRJa6wFjv2-tA7r1cjdY6mJdrBzNGPNn43wXrz987kr82XsJlao1L54B17cVcQw9eV0mJGnxwNg50orMmgbgWvJQD8B6qgUbWWmFE8oC6GlCL19zdCMLemzN5kU-bWlEE02VTOPP_zKfeJ32oy8OoAUP7QzVM0yXnKEjofyS2mC_4f9T8BJdGkBA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Shang, Hong</creator><creator>Larson, Peder E.Z.</creator><creator>Kerr, Adam</creator><creator>Reed, Galen</creator><creator>Sukumar, Subramaniam</creator><creator>Elkhaled, Adam</creator><creator>Gordon, Jeremy W.</creator><creator>Ohliger, Michael A.</creator><creator>Pauly, John M.</creator><creator>Lustig, Michael</creator><creator>Vigneron, Daniel B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Multiband RF pulses with improved performance via convex optimization</title><author>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Brain</topic><topic>Calibration</topic><topic>Carbon Isotopes</topic><topic>Computational geometry</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Generalized flip angle</topic><topic>Humans</topic><topic>Improved pulse performance</topic><topic>Lactates - chemistry</topic><topic>Low pass filters</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Multiband</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Phantoms, Imaging</topic><topic>Protons</topic><topic>Pyruvates - chemistry</topic><topic>Radio Waves</topic><topic>RF pulse design</topic><topic>Saturation</topic><topic>Shinnar–Le Roux algorithm</topic><topic>Tradeoffs</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Larson, Peder E.Z.</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Reed, Galen</creatorcontrib><creatorcontrib>Sukumar, Subramaniam</creatorcontrib><creatorcontrib>Elkhaled, Adam</creatorcontrib><creatorcontrib>Gordon, Jeremy W.</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Hong</au><au>Larson, Peder E.Z.</au><au>Kerr, Adam</au><au>Reed, Galen</au><au>Sukumar, Subramaniam</au><au>Elkhaled, Adam</au><au>Gordon, Jeremy W.</au><au>Ohliger, Michael A.</au><au>Pauly, John M.</au><au>Lustig, Michael</au><au>Vigneron, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiband RF pulses with improved performance via convex optimization</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>262</volume><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted]
•Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS.
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26754063</pmid><doi>10.1016/j.jmr.2015.11.010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2016-01, Vol.262, p.81-90 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716678 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Balancing Brain Calibration Carbon Isotopes Computational geometry Convex optimization Convexity Generalized flip angle Humans Improved pulse performance Lactates - chemistry Low pass filters Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Multiband Optimization Performance enhancement Phantoms, Imaging Protons Pyruvates - chemistry Radio Waves RF pulse design Saturation Shinnar–Le Roux algorithm Tradeoffs Urea - chemistry |
title | Multiband RF pulses with improved performance via convex optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiband%20RF%20pulses%20with%20improved%20performance%20via%20convex%20optimization&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Shang,%20Hong&rft.date=2016-01-01&rft.volume=262&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2015.11.010&rft_dat=%3Cproquest_pubme%3E1793245000%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760864751&rft_id=info:pmid/26754063&rfr_iscdi=true |