Loading…

Multiband RF pulses with improved performance via convex optimization

[Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance (1997) 2016-01, Vol.262, p.81-90
Main Authors: Shang, Hong, Larson, Peder E.Z., Kerr, Adam, Reed, Galen, Sukumar, Subramaniam, Elkhaled, Adam, Gordon, Jeremy W., Ohliger, Michael A., Pauly, John M., Lustig, Michael, Vigneron, Daniel B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143
cites cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143
container_end_page 90
container_issue
container_start_page 81
container_title Journal of magnetic resonance (1997)
container_volume 262
creator Shang, Hong
Larson, Peder E.Z.
Kerr, Adam
Reed, Galen
Sukumar, Subramaniam
Elkhaled, Adam
Gordon, Jeremy W.
Ohliger, Michael A.
Pauly, John M.
Lustig, Michael
Vigneron, Daniel B.
description [Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS. Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.
doi_str_mv 10.1016/j.jmr.2015.11.010
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780715002980</els_id><sourcerecordid>1793245000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</originalsourceid><addsrcrecordid>eNqNkV9r1jAUh4Mobnv1A3gjvfSm9ZykSVoEQcbmhIkgeh2y9NTlpW1q0nbqpzfznUNvxKscyPP75c_D2DOECgHVy321H2PFAWWFWAHCA3aM0KoSGqke_pqh1A3oI3aS0h4AUWp4zI640rIGJY7Z2ft1WPyVnbri43kxr0OiVNz45brw4xzDRl0xU-xDHO3kqNi8LVyYNvpWhHnxo_9hFx-mJ-xRb3P06d26Y5_Pzz6dXpSXH96-O31zWTop66W0Ta-t1I0QSta8I2o4d8il6lxrhRYOAVqbR-JNX6MEwZu2FdCRJa6wFjv2-tA7r1cjdY6mJdrBzNGPNn43wXrz987kr82XsJlao1L54B17cVcQw9eV0mJGnxwNg50orMmgbgWvJQD8B6qgUbWWmFE8oC6GlCL19zdCMLemzN5kU-bWlEE02VTOPP_zKfeJ32oy8OoAUP7QzVM0yXnKEjofyS2mC_4f9T8BJdGkBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760864751</pqid></control><display><type>article</type><title>Multiband RF pulses with improved performance via convex optimization</title><source>ScienceDirect Freedom Collection</source><creator>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</creator><creatorcontrib>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</creatorcontrib><description>[Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS. Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2015.11.010</identifier><identifier>PMID: 26754063</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Balancing ; Brain ; Calibration ; Carbon Isotopes ; Computational geometry ; Convex optimization ; Convexity ; Generalized flip angle ; Humans ; Improved pulse performance ; Lactates - chemistry ; Low pass filters ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Multiband ; Optimization ; Performance enhancement ; Phantoms, Imaging ; Protons ; Pyruvates - chemistry ; Radio Waves ; RF pulse design ; Saturation ; Shinnar–Le Roux algorithm ; Tradeoffs ; Urea - chemistry</subject><ispartof>Journal of magnetic resonance (1997), 2016-01, Vol.262, p.81-90</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</citedby><cites>FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26754063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Larson, Peder E.Z.</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Reed, Galen</creatorcontrib><creatorcontrib>Sukumar, Subramaniam</creatorcontrib><creatorcontrib>Elkhaled, Adam</creatorcontrib><creatorcontrib>Gordon, Jeremy W.</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><title>Multiband RF pulses with improved performance via convex optimization</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>[Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS. Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Brain</subject><subject>Calibration</subject><subject>Carbon Isotopes</subject><subject>Computational geometry</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Generalized flip angle</subject><subject>Humans</subject><subject>Improved pulse performance</subject><subject>Lactates - chemistry</subject><subject>Low pass filters</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Multiband</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Phantoms, Imaging</subject><subject>Protons</subject><subject>Pyruvates - chemistry</subject><subject>Radio Waves</subject><subject>RF pulse design</subject><subject>Saturation</subject><subject>Shinnar–Le Roux algorithm</subject><subject>Tradeoffs</subject><subject>Urea - chemistry</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkV9r1jAUh4Mobnv1A3gjvfSm9ZykSVoEQcbmhIkgeh2y9NTlpW1q0nbqpzfznUNvxKscyPP75c_D2DOECgHVy321H2PFAWWFWAHCA3aM0KoSGqke_pqh1A3oI3aS0h4AUWp4zI640rIGJY7Z2ft1WPyVnbri43kxr0OiVNz45brw4xzDRl0xU-xDHO3kqNi8LVyYNvpWhHnxo_9hFx-mJ-xRb3P06d26Y5_Pzz6dXpSXH96-O31zWTop66W0Ta-t1I0QSta8I2o4d8il6lxrhRYOAVqbR-JNX6MEwZu2FdCRJa6wFjv2-tA7r1cjdY6mJdrBzNGPNn43wXrz987kr82XsJlao1L54B17cVcQw9eV0mJGnxwNg50orMmgbgWvJQD8B6qgUbWWmFE8oC6GlCL19zdCMLemzN5kU-bWlEE02VTOPP_zKfeJ32oy8OoAUP7QzVM0yXnKEjofyS2mC_4f9T8BJdGkBA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Shang, Hong</creator><creator>Larson, Peder E.Z.</creator><creator>Kerr, Adam</creator><creator>Reed, Galen</creator><creator>Sukumar, Subramaniam</creator><creator>Elkhaled, Adam</creator><creator>Gordon, Jeremy W.</creator><creator>Ohliger, Michael A.</creator><creator>Pauly, John M.</creator><creator>Lustig, Michael</creator><creator>Vigneron, Daniel B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Multiband RF pulses with improved performance via convex optimization</title><author>Shang, Hong ; Larson, Peder E.Z. ; Kerr, Adam ; Reed, Galen ; Sukumar, Subramaniam ; Elkhaled, Adam ; Gordon, Jeremy W. ; Ohliger, Michael A. ; Pauly, John M. ; Lustig, Michael ; Vigneron, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Brain</topic><topic>Calibration</topic><topic>Carbon Isotopes</topic><topic>Computational geometry</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Generalized flip angle</topic><topic>Humans</topic><topic>Improved pulse performance</topic><topic>Lactates - chemistry</topic><topic>Low pass filters</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Multiband</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Phantoms, Imaging</topic><topic>Protons</topic><topic>Pyruvates - chemistry</topic><topic>Radio Waves</topic><topic>RF pulse design</topic><topic>Saturation</topic><topic>Shinnar–Le Roux algorithm</topic><topic>Tradeoffs</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Larson, Peder E.Z.</creatorcontrib><creatorcontrib>Kerr, Adam</creatorcontrib><creatorcontrib>Reed, Galen</creatorcontrib><creatorcontrib>Sukumar, Subramaniam</creatorcontrib><creatorcontrib>Elkhaled, Adam</creatorcontrib><creatorcontrib>Gordon, Jeremy W.</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Pauly, John M.</creatorcontrib><creatorcontrib>Lustig, Michael</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Hong</au><au>Larson, Peder E.Z.</au><au>Kerr, Adam</au><au>Reed, Galen</au><au>Sukumar, Subramaniam</au><au>Elkhaled, Adam</au><au>Gordon, Jeremy W.</au><au>Ohliger, Michael A.</au><au>Pauly, John M.</au><au>Lustig, Michael</au><au>Vigneron, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiband RF pulses with improved performance via convex optimization</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>262</volume><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted] •Spectral sparsity was exploited to improve RF pulse performance by specifying a multiband profile.•A framework for RF pulse design was developed using the SLR algorithm and convex optimization.•It can create RF pulses with multiband magnitude profile, arbitrary phase profile, and generalized flip angle.•We present three examples of RF pulse design for hyperpolarized 13C MRI and 1H MRS. Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar–Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26754063</pmid><doi>10.1016/j.jmr.2015.11.010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2016-01, Vol.262, p.81-90
issn 1090-7807
1096-0856
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4716678
source ScienceDirect Freedom Collection
subjects Algorithms
Balancing
Brain
Calibration
Carbon Isotopes
Computational geometry
Convex optimization
Convexity
Generalized flip angle
Humans
Improved pulse performance
Lactates - chemistry
Low pass filters
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Multiband
Optimization
Performance enhancement
Phantoms, Imaging
Protons
Pyruvates - chemistry
Radio Waves
RF pulse design
Saturation
Shinnar–Le Roux algorithm
Tradeoffs
Urea - chemistry
title Multiband RF pulses with improved performance via convex optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiband%20RF%20pulses%20with%20improved%20performance%20via%20convex%20optimization&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Shang,%20Hong&rft.date=2016-01-01&rft.volume=262&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2015.11.010&rft_dat=%3Cproquest_pubme%3E1793245000%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-a8f7a578336542dee822c1256dc9a373c1009a9a3e28f41503289930deae26143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760864751&rft_id=info:pmid/26754063&rfr_iscdi=true