Loading…

The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia

Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-tran...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2016-01, Vol.35 (3), p.279-289
Main Authors: Giotopoulos, G, Chan, W-I, Horton, S J, Ruau, D, Gallipoli, P, Fowler, A, Crawley, C, Papaemmanuil, E, Campbell, P J, Göttgens, B, Van Deursen, J M, Cole, P A, Huntly, B J P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3
cites cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3
container_end_page 289
container_issue 3
container_start_page 279
container_title Oncogene
container_volume 35
creator Giotopoulos, G
Chan, W-I
Horton, S J
Ruau, D
Gallipoli, P
Fowler, A
Crawley, C
Papaemmanuil, E
Campbell, P J
Göttgens, B
Van Deursen, J M
Cole, P A
Huntly, B J P
description Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.
doi_str_mv 10.1038/onc.2015.92
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441706565</galeid><sourcerecordid>A441706565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</originalsourceid><addsrcrecordid>eNptks1vFCEYxonR2HX15N2QeDGps8LMAMOlSd34lTTRQz0ThnlnljoLIzAmTfzjy7hrbU3DAQK_54H35UHoJSUbSqrmnXdmUxLKNrJ8hFa0FrxgTNaP0YpIRgpZVuUJehbjFSFESFI-RScla2RVSrpCvy93gGGyAzhI1uAAwzzq5EPE2_ffsHYdnipCcK-NHW3SCfAI8w_Y-0URbfyDBJgCRHAJpx0EPcG8eCUdBkgRW4e1mbNyfw2jt93Rwern6EmvxwgvjvMaff_44XL7ubj4-unL9vyiMLwpU9FKLZngpBEgJJCG8opJ2sqKaCHKrmdS91BxA5q0rGpF3Za6AsOBQUfqvF6js4PvNLd76Ex-aNCjmoLd63CtvLbq_omzOzX4X6oWuUkNzwZvjgbB_5whJrW30cA4agd-jooKzqSQlLKMvv4PvfJzcLm8TLEmfwwj9T9q0CMo63qf7zWLqTqvayoIZ3zx2jxA5dHl7hnvoLd5_57g9CAwwccYoL-tkRK1hEXlsKglLCrHYo1e3W3LLfs3HRl4ewBiPnIDhDu1POB3A-ZTye8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758594504</pqid></control><display><type>article</type><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><source>Springer Nature</source><creator>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</creator><creatorcontrib>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</creatorcontrib><description>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2015.92</identifier><identifier>PMID: 25893291</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/2 ; 13/31 ; 38/39 ; 631/67/1990/283/1897 ; 64/110 ; 64/60 ; Analysis ; Animals ; Apoptosis ; Apoptosis - drug effects ; Benzoates - administration &amp; dosage ; Cell Biology ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; E1A-Associated p300 Protein - biosynthesis ; E1A-Associated p300 Protein - genetics ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Female ; Gene Expression Regulation, Leukemic - drug effects ; Health aspects ; Histone Acetyltransferases - antagonists &amp; inhibitors ; Histone Acetyltransferases - genetics ; Human Genetics ; Humans ; Internal Medicine ; Leukemia ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Nitrobenzenes ; Oncology ; original-article ; Pathogenesis ; Peptide Fragments - biosynthesis ; Peptide Fragments - genetics ; Protein expression ; Pyrazoles - administration &amp; dosage ; Pyrazolones ; Sialoglycoproteins - biosynthesis ; Sialoglycoproteins - genetics</subject><ispartof>Oncogene, 2016-01, Vol.35 (3), p.279-289</ispartof><rights>Macmillan Publishers Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</citedby><cites>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25893291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giotopoulos, G</creatorcontrib><creatorcontrib>Chan, W-I</creatorcontrib><creatorcontrib>Horton, S J</creatorcontrib><creatorcontrib>Ruau, D</creatorcontrib><creatorcontrib>Gallipoli, P</creatorcontrib><creatorcontrib>Fowler, A</creatorcontrib><creatorcontrib>Crawley, C</creatorcontrib><creatorcontrib>Papaemmanuil, E</creatorcontrib><creatorcontrib>Campbell, P J</creatorcontrib><creatorcontrib>Göttgens, B</creatorcontrib><creatorcontrib>Van Deursen, J M</creatorcontrib><creatorcontrib>Cole, P A</creatorcontrib><creatorcontrib>Huntly, B J P</creatorcontrib><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</description><subject>13/106</subject><subject>13/2</subject><subject>13/31</subject><subject>38/39</subject><subject>631/67/1990/283/1897</subject><subject>64/110</subject><subject>64/60</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Benzoates - administration &amp; dosage</subject><subject>Cell Biology</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>E1A-Associated p300 Protein - biosynthesis</subject><subject>E1A-Associated p300 Protein - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic - drug effects</subject><subject>Health aspects</subject><subject>Histone Acetyltransferases - antagonists &amp; inhibitors</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Nitrobenzenes</subject><subject>Oncology</subject><subject>original-article</subject><subject>Pathogenesis</subject><subject>Peptide Fragments - biosynthesis</subject><subject>Peptide Fragments - genetics</subject><subject>Protein expression</subject><subject>Pyrazoles - administration &amp; dosage</subject><subject>Pyrazolones</subject><subject>Sialoglycoproteins - biosynthesis</subject><subject>Sialoglycoproteins - genetics</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptks1vFCEYxonR2HX15N2QeDGps8LMAMOlSd34lTTRQz0ThnlnljoLIzAmTfzjy7hrbU3DAQK_54H35UHoJSUbSqrmnXdmUxLKNrJ8hFa0FrxgTNaP0YpIRgpZVuUJehbjFSFESFI-RScla2RVSrpCvy93gGGyAzhI1uAAwzzq5EPE2_ffsHYdnipCcK-NHW3SCfAI8w_Y-0URbfyDBJgCRHAJpx0EPcG8eCUdBkgRW4e1mbNyfw2jt93Rwern6EmvxwgvjvMaff_44XL7ubj4-unL9vyiMLwpU9FKLZngpBEgJJCG8opJ2sqKaCHKrmdS91BxA5q0rGpF3Za6AsOBQUfqvF6js4PvNLd76Ex-aNCjmoLd63CtvLbq_omzOzX4X6oWuUkNzwZvjgbB_5whJrW30cA4agd-jooKzqSQlLKMvv4PvfJzcLm8TLEmfwwj9T9q0CMo63qf7zWLqTqvayoIZ3zx2jxA5dHl7hnvoLd5_57g9CAwwccYoL-tkRK1hEXlsKglLCrHYo1e3W3LLfs3HRl4ewBiPnIDhDu1POB3A-ZTye8</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Giotopoulos, G</creator><creator>Chan, W-I</creator><creator>Horton, S J</creator><creator>Ruau, D</creator><creator>Gallipoli, P</creator><creator>Fowler, A</creator><creator>Crawley, C</creator><creator>Papaemmanuil, E</creator><creator>Campbell, P J</creator><creator>Göttgens, B</creator><creator>Van Deursen, J M</creator><creator>Cole, P A</creator><creator>Huntly, B J P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160121</creationdate><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><author>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/2</topic><topic>13/31</topic><topic>38/39</topic><topic>631/67/1990/283/1897</topic><topic>64/110</topic><topic>64/60</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Benzoates - administration &amp; dosage</topic><topic>Cell Biology</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>E1A-Associated p300 Protein - biosynthesis</topic><topic>E1A-Associated p300 Protein - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic - drug effects</topic><topic>Health aspects</topic><topic>Histone Acetyltransferases - antagonists &amp; inhibitors</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Nitrobenzenes</topic><topic>Oncology</topic><topic>original-article</topic><topic>Pathogenesis</topic><topic>Peptide Fragments - biosynthesis</topic><topic>Peptide Fragments - genetics</topic><topic>Protein expression</topic><topic>Pyrazoles - administration &amp; dosage</topic><topic>Pyrazolones</topic><topic>Sialoglycoproteins - biosynthesis</topic><topic>Sialoglycoproteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giotopoulos, G</creatorcontrib><creatorcontrib>Chan, W-I</creatorcontrib><creatorcontrib>Horton, S J</creatorcontrib><creatorcontrib>Ruau, D</creatorcontrib><creatorcontrib>Gallipoli, P</creatorcontrib><creatorcontrib>Fowler, A</creatorcontrib><creatorcontrib>Crawley, C</creatorcontrib><creatorcontrib>Papaemmanuil, E</creatorcontrib><creatorcontrib>Campbell, P J</creatorcontrib><creatorcontrib>Göttgens, B</creatorcontrib><creatorcontrib>Van Deursen, J M</creatorcontrib><creatorcontrib>Cole, P A</creatorcontrib><creatorcontrib>Huntly, B J P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giotopoulos, G</au><au>Chan, W-I</au><au>Horton, S J</au><au>Ruau, D</au><au>Gallipoli, P</au><au>Fowler, A</au><au>Crawley, C</au><au>Papaemmanuil, E</au><au>Campbell, P J</au><au>Göttgens, B</au><au>Van Deursen, J M</au><au>Cole, P A</au><au>Huntly, B J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2016-01-21</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25893291</pmid><doi>10.1038/onc.2015.92</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2016-01, Vol.35 (3), p.279-289
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729186
source Springer Nature
subjects 13/106
13/2
13/31
38/39
631/67/1990/283/1897
64/110
64/60
Analysis
Animals
Apoptosis
Apoptosis - drug effects
Benzoates - administration & dosage
Cell Biology
Cell Cycle Checkpoints - drug effects
Cell Line, Tumor
E1A-Associated p300 Protein - biosynthesis
E1A-Associated p300 Protein - genetics
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Female
Gene Expression Regulation, Leukemic - drug effects
Health aspects
Histone Acetyltransferases - antagonists & inhibitors
Histone Acetyltransferases - genetics
Human Genetics
Humans
Internal Medicine
Leukemia
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Male
Medicine
Medicine & Public Health
Mice
Nitrobenzenes
Oncology
original-article
Pathogenesis
Peptide Fragments - biosynthesis
Peptide Fragments - genetics
Protein expression
Pyrazoles - administration & dosage
Pyrazolones
Sialoglycoproteins - biosynthesis
Sialoglycoproteins - genetics
title The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20epigenetic%20regulators%20CBP%20and%20p300%20facilitate%20leukemogenesis%20and%20represent%20therapeutic%20targets%20in%20acute%20myeloid%20leukemia&rft.jtitle=Oncogene&rft.au=Giotopoulos,%20G&rft.date=2016-01-21&rft.volume=35&rft.issue=3&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2015.92&rft_dat=%3Cgale_pubme%3EA441706565%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1758594504&rft_id=info:pmid/25893291&rft_galeid=A441706565&rfr_iscdi=true