Loading…
The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia
Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-tran...
Saved in:
Published in: | Oncogene 2016-01, Vol.35 (3), p.279-289 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3 |
container_end_page | 289 |
container_issue | 3 |
container_start_page | 279 |
container_title | Oncogene |
container_volume | 35 |
creator | Giotopoulos, G Chan, W-I Horton, S J Ruau, D Gallipoli, P Fowler, A Crawley, C Papaemmanuil, E Campbell, P J Göttgens, B Van Deursen, J M Cole, P A Huntly, B J P |
description | Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using
in vitro
and
in vivo
genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets
in vitro
across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML. |
doi_str_mv | 10.1038/onc.2015.92 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A441706565</galeid><sourcerecordid>A441706565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</originalsourceid><addsrcrecordid>eNptks1vFCEYxonR2HX15N2QeDGps8LMAMOlSd34lTTRQz0ThnlnljoLIzAmTfzjy7hrbU3DAQK_54H35UHoJSUbSqrmnXdmUxLKNrJ8hFa0FrxgTNaP0YpIRgpZVuUJehbjFSFESFI-RScla2RVSrpCvy93gGGyAzhI1uAAwzzq5EPE2_ffsHYdnipCcK-NHW3SCfAI8w_Y-0URbfyDBJgCRHAJpx0EPcG8eCUdBkgRW4e1mbNyfw2jt93Rwern6EmvxwgvjvMaff_44XL7ubj4-unL9vyiMLwpU9FKLZngpBEgJJCG8opJ2sqKaCHKrmdS91BxA5q0rGpF3Za6AsOBQUfqvF6js4PvNLd76Ex-aNCjmoLd63CtvLbq_omzOzX4X6oWuUkNzwZvjgbB_5whJrW30cA4agd-jooKzqSQlLKMvv4PvfJzcLm8TLEmfwwj9T9q0CMo63qf7zWLqTqvayoIZ3zx2jxA5dHl7hnvoLd5_57g9CAwwccYoL-tkRK1hEXlsKglLCrHYo1e3W3LLfs3HRl4ewBiPnIDhDu1POB3A-ZTye8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758594504</pqid></control><display><type>article</type><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><source>Springer Nature</source><creator>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</creator><creatorcontrib>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</creatorcontrib><description>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using
in vitro
and
in vivo
genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets
in vitro
across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2015.92</identifier><identifier>PMID: 25893291</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/2 ; 13/31 ; 38/39 ; 631/67/1990/283/1897 ; 64/110 ; 64/60 ; Analysis ; Animals ; Apoptosis ; Apoptosis - drug effects ; Benzoates - administration & dosage ; Cell Biology ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; E1A-Associated p300 Protein - biosynthesis ; E1A-Associated p300 Protein - genetics ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Female ; Gene Expression Regulation, Leukemic - drug effects ; Health aspects ; Histone Acetyltransferases - antagonists & inhibitors ; Histone Acetyltransferases - genetics ; Human Genetics ; Humans ; Internal Medicine ; Leukemia ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Male ; Medicine ; Medicine & Public Health ; Mice ; Nitrobenzenes ; Oncology ; original-article ; Pathogenesis ; Peptide Fragments - biosynthesis ; Peptide Fragments - genetics ; Protein expression ; Pyrazoles - administration & dosage ; Pyrazolones ; Sialoglycoproteins - biosynthesis ; Sialoglycoproteins - genetics</subject><ispartof>Oncogene, 2016-01, Vol.35 (3), p.279-289</ispartof><rights>Macmillan Publishers Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</citedby><cites>FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25893291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giotopoulos, G</creatorcontrib><creatorcontrib>Chan, W-I</creatorcontrib><creatorcontrib>Horton, S J</creatorcontrib><creatorcontrib>Ruau, D</creatorcontrib><creatorcontrib>Gallipoli, P</creatorcontrib><creatorcontrib>Fowler, A</creatorcontrib><creatorcontrib>Crawley, C</creatorcontrib><creatorcontrib>Papaemmanuil, E</creatorcontrib><creatorcontrib>Campbell, P J</creatorcontrib><creatorcontrib>Göttgens, B</creatorcontrib><creatorcontrib>Van Deursen, J M</creatorcontrib><creatorcontrib>Cole, P A</creatorcontrib><creatorcontrib>Huntly, B J P</creatorcontrib><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using
in vitro
and
in vivo
genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets
in vitro
across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</description><subject>13/106</subject><subject>13/2</subject><subject>13/31</subject><subject>38/39</subject><subject>631/67/1990/283/1897</subject><subject>64/110</subject><subject>64/60</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Benzoates - administration & dosage</subject><subject>Cell Biology</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>E1A-Associated p300 Protein - biosynthesis</subject><subject>E1A-Associated p300 Protein - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic - drug effects</subject><subject>Health aspects</subject><subject>Histone Acetyltransferases - antagonists & inhibitors</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Nitrobenzenes</subject><subject>Oncology</subject><subject>original-article</subject><subject>Pathogenesis</subject><subject>Peptide Fragments - biosynthesis</subject><subject>Peptide Fragments - genetics</subject><subject>Protein expression</subject><subject>Pyrazoles - administration & dosage</subject><subject>Pyrazolones</subject><subject>Sialoglycoproteins - biosynthesis</subject><subject>Sialoglycoproteins - genetics</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptks1vFCEYxonR2HX15N2QeDGps8LMAMOlSd34lTTRQz0ThnlnljoLIzAmTfzjy7hrbU3DAQK_54H35UHoJSUbSqrmnXdmUxLKNrJ8hFa0FrxgTNaP0YpIRgpZVuUJehbjFSFESFI-RScla2RVSrpCvy93gGGyAzhI1uAAwzzq5EPE2_ffsHYdnipCcK-NHW3SCfAI8w_Y-0URbfyDBJgCRHAJpx0EPcG8eCUdBkgRW4e1mbNyfw2jt93Rwern6EmvxwgvjvMaff_44XL7ubj4-unL9vyiMLwpU9FKLZngpBEgJJCG8opJ2sqKaCHKrmdS91BxA5q0rGpF3Za6AsOBQUfqvF6js4PvNLd76Ex-aNCjmoLd63CtvLbq_omzOzX4X6oWuUkNzwZvjgbB_5whJrW30cA4agd-jooKzqSQlLKMvv4PvfJzcLm8TLEmfwwj9T9q0CMo63qf7zWLqTqvayoIZ3zx2jxA5dHl7hnvoLd5_57g9CAwwccYoL-tkRK1hEXlsKglLCrHYo1e3W3LLfs3HRl4ewBiPnIDhDu1POB3A-ZTye8</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Giotopoulos, G</creator><creator>Chan, W-I</creator><creator>Horton, S J</creator><creator>Ruau, D</creator><creator>Gallipoli, P</creator><creator>Fowler, A</creator><creator>Crawley, C</creator><creator>Papaemmanuil, E</creator><creator>Campbell, P J</creator><creator>Göttgens, B</creator><creator>Van Deursen, J M</creator><creator>Cole, P A</creator><creator>Huntly, B J P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160121</creationdate><title>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</title><author>Giotopoulos, G ; Chan, W-I ; Horton, S J ; Ruau, D ; Gallipoli, P ; Fowler, A ; Crawley, C ; Papaemmanuil, E ; Campbell, P J ; Göttgens, B ; Van Deursen, J M ; Cole, P A ; Huntly, B J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/2</topic><topic>13/31</topic><topic>38/39</topic><topic>631/67/1990/283/1897</topic><topic>64/110</topic><topic>64/60</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Benzoates - administration & dosage</topic><topic>Cell Biology</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>E1A-Associated p300 Protein - biosynthesis</topic><topic>E1A-Associated p300 Protein - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic - drug effects</topic><topic>Health aspects</topic><topic>Histone Acetyltransferases - antagonists & inhibitors</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Nitrobenzenes</topic><topic>Oncology</topic><topic>original-article</topic><topic>Pathogenesis</topic><topic>Peptide Fragments - biosynthesis</topic><topic>Peptide Fragments - genetics</topic><topic>Protein expression</topic><topic>Pyrazoles - administration & dosage</topic><topic>Pyrazolones</topic><topic>Sialoglycoproteins - biosynthesis</topic><topic>Sialoglycoproteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giotopoulos, G</creatorcontrib><creatorcontrib>Chan, W-I</creatorcontrib><creatorcontrib>Horton, S J</creatorcontrib><creatorcontrib>Ruau, D</creatorcontrib><creatorcontrib>Gallipoli, P</creatorcontrib><creatorcontrib>Fowler, A</creatorcontrib><creatorcontrib>Crawley, C</creatorcontrib><creatorcontrib>Papaemmanuil, E</creatorcontrib><creatorcontrib>Campbell, P J</creatorcontrib><creatorcontrib>Göttgens, B</creatorcontrib><creatorcontrib>Van Deursen, J M</creatorcontrib><creatorcontrib>Cole, P A</creatorcontrib><creatorcontrib>Huntly, B J P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giotopoulos, G</au><au>Chan, W-I</au><au>Horton, S J</au><au>Ruau, D</au><au>Gallipoli, P</au><au>Fowler, A</au><au>Crawley, C</au><au>Papaemmanuil, E</au><au>Campbell, P J</au><au>Göttgens, B</au><au>Van Deursen, J M</au><au>Cole, P A</au><au>Huntly, B J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2016-01-21</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using
in vitro
and
in vivo
genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets
in vitro
across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25893291</pmid><doi>10.1038/onc.2015.92</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2016-01, Vol.35 (3), p.279-289 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729186 |
source | Springer Nature |
subjects | 13/106 13/2 13/31 38/39 631/67/1990/283/1897 64/110 64/60 Analysis Animals Apoptosis Apoptosis - drug effects Benzoates - administration & dosage Cell Biology Cell Cycle Checkpoints - drug effects Cell Line, Tumor E1A-Associated p300 Protein - biosynthesis E1A-Associated p300 Protein - genetics Epigenesis, Genetic Epigenetic inheritance Epigenetics Female Gene Expression Regulation, Leukemic - drug effects Health aspects Histone Acetyltransferases - antagonists & inhibitors Histone Acetyltransferases - genetics Human Genetics Humans Internal Medicine Leukemia Leukemia, Myeloid, Acute - genetics Leukemia, Myeloid, Acute - pathology Male Medicine Medicine & Public Health Mice Nitrobenzenes Oncology original-article Pathogenesis Peptide Fragments - biosynthesis Peptide Fragments - genetics Protein expression Pyrazoles - administration & dosage Pyrazolones Sialoglycoproteins - biosynthesis Sialoglycoproteins - genetics |
title | The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20epigenetic%20regulators%20CBP%20and%20p300%20facilitate%20leukemogenesis%20and%20represent%20therapeutic%20targets%20in%20acute%20myeloid%20leukemia&rft.jtitle=Oncogene&rft.au=Giotopoulos,%20G&rft.date=2016-01-21&rft.volume=35&rft.issue=3&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2015.92&rft_dat=%3Cgale_pubme%3EA441706565%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c682t-b9a9576087e79e08163591b930a772df59afe36cea0b53b74b2a3ec6e5ed042a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1758594504&rft_id=info:pmid/25893291&rft_galeid=A441706565&rfr_iscdi=true |