Loading…

p53 Configures the G2/M arrest response of nucleostemin-deficient cells

Nucleostemin (NS) protects the genome from replication-induced DNA damage and has an indispensable role in maintaining the continuous proliferation of both p53-wild-type and mutant cells. Yet, some outcomes of NS-deficient cells appear to be shaped by their p53 status, which stimulates conflicting c...

Full description

Saved in:
Bibliographic Details
Published in:Cell death discovery 2015-11, Vol.1 (1), p.15060-15060, Article 15060
Main Authors: Huang, G, Meng, L, Tsai, RYL
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nucleostemin (NS) protects the genome from replication-induced DNA damage and has an indispensable role in maintaining the continuous proliferation of both p53-wild-type and mutant cells. Yet, some outcomes of NS-deficient cells appear to be shaped by their p53 status, which stimulates conflicting claims on the role of p53 in executing the NS function. This disparity was conveniently attributed to the usual suspect of cell-type variations. To provide a definitive resolution, we investigated the interplay between NS and p53 in two pairs of isogenic cells, that is, genetically modified mouse embryonic fibroblast (MEF) cells and HCT116 human colon cancer cells. In MEF cells, p53 deletion further compromises rather than rescues the proliferative potential of NS-depleted cells without changing their G2/M arrest fate before prophase entry. The detrimental effect of p53 loss in NS-depleted MEF cells correlates with a dramatic increase of polyploid giant cells (PGCs) (up to 24%), which indicates aberrant mitosis. To determine how p53 shapes the response of cells to NS depletion at the molecular level, we showed that p53 turns on the expression of reprimo and MDM2 in NS-deficient MEF cells. In absence of p53, NS-deficient MEF cells exhibit increased levels of phosphorylated cdc2 (Y15) protein and cyclin B1. In cancer (HCT116) cells, NS loss leads to G2/M arrest under both p53wt and p53ko conditions and increases phosphorylated cdc2 more in p53ko than in p53wt cells, as it does in MEF cells. Unlike its effect in MEF cells, NS depletion decreases tumor growth and increases the expression of reprimo and cyclin B1 in a p53-independent manner in HCT116 cells. Our data indicate that the p53 status of NS-deficient cells orchestrates how they respond to G2/M arrest in a normal versus cancer cell distinct fashion.
ISSN:2058-7716
2058-7716
DOI:10.1038/cddiscovery.2015.60