Loading…
Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax
We have successfully truncated and recombinantly-expressed 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibitio...
Saved in:
Published in: | Protein expression and purification 2016-04, Vol.120, p.16-27 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33 |
container_end_page | 27 |
container_issue | |
container_start_page | 16 |
container_title | Protein expression and purification |
container_volume | 120 |
creator | Battistini, Matthew R. Shoji, Christopher Handa, Sumit Breydo, Leonid Merkler, David J. |
description | We have successfully truncated and recombinantly-expressed 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and d-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful in treatment of malaria.
•The novel truncation and expression of Plasmodium falciparum DXS and Plasmodium vivax DXR.•Enzymatic characterization by steady-state kinetics, inhibition, and binding constants.•Confirmed previous reports of a random sequential binding mechanism for both P. falciparum and P. vivax DXS. |
doi_str_mv | 10.1016/j.pep.2015.12.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046592815301182</els_id><sourcerecordid>1760922868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEoqXwAGyQlyyai534JxESUlXxJxXRBUjsLF97cuMqsYPtXDV9U94Gp7dUZYNYeeQ555uxdYriJcEbggl_c7WZYNpUmLANqTYY14-KY4JbXuJKtI_XmvKStVVzVDyL8QpjQjhmT4ujivO2bak4Ln59Ad0rZ2OyGm2tM9btkHXR7voUUecDIqUBf72UpvyxDPPgI5SsvOx9nHqVAMXFpV5FOEWpBwTuZhkBaZXUsNysrPW2syEmFEDpZL1DvkM2-imA89bkof6WAdHGPPnWMKpBBatKrea4QqbgU14xnqLLQcXRGzuPqFODtpMKuVTOPOzs7V5dPy-eZEWEF3fnSfH9w_tv55_Ki68fP5-fXZSaNjSVBIhoGma2YKAD0tBGK6YUZTXFHesEFQKq2nBWiZozqlvBtpRRteWCGaHq-qR4d-BO83YEo8GloAY5BTuqsEivrPy742wvd34vqaha1uAMeH0HCP7nDDHJ0UYNw6Ac-DlKIkTdYswb9h9SjtuqaniTpeQg1cHHGKC734hguaZHXsmcHrmmR5JK5vRkz6uHT7l3_IlLFrw9CCB_6N5CkFFbcBqMDaCTNN7-A_8bwmfcvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760922868</pqid></control><display><type>article</type><title>Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax</title><source>Elsevier</source><creator>Battistini, Matthew R. ; Shoji, Christopher ; Handa, Sumit ; Breydo, Leonid ; Merkler, David J.</creator><creatorcontrib>Battistini, Matthew R. ; Shoji, Christopher ; Handa, Sumit ; Breydo, Leonid ; Merkler, David J.</creatorcontrib><description>We have successfully truncated and recombinantly-expressed 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and d-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful in treatment of malaria.
•The novel truncation and expression of Plasmodium falciparum DXS and Plasmodium vivax DXR.•Enzymatic characterization by steady-state kinetics, inhibition, and binding constants.•Confirmed previous reports of a random sequential binding mechanism for both P. falciparum and P. vivax DXS.</description><identifier>ISSN: 1046-5928</identifier><identifier>EISSN: 1096-0279</identifier><identifier>DOI: 10.1016/j.pep.2015.12.003</identifier><identifier>PMID: 26699947</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1-Deoxy-d-xylulose-5-phosphate synthase ; Amino Acid Sequence ; Catalytic Domain ; Cloning, Molecular ; Glyceraldehyde 3-Phosphate - metabolism ; Isoprenoids ; Kinetics ; Malaria ; Methylerythritol phosphate pathway ; Molecular Sequence Data ; Plasmodium falciparum ; Plasmodium falciparum - enzymology ; Plasmodium vivax ; Plasmodium vivax - enzymology ; Protozoan Proteins - metabolism ; Pyruvic Acid - metabolism ; Recombinant Proteins - metabolism ; Sequence Alignment ; Transferases - metabolism</subject><ispartof>Protein expression and purification, 2016-04, Vol.120, p.16-27</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33</citedby><cites>FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33</cites><orcidid>0000-0001-6173-0152 ; 0000-0003-4666-2301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26699947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Battistini, Matthew R.</creatorcontrib><creatorcontrib>Shoji, Christopher</creatorcontrib><creatorcontrib>Handa, Sumit</creatorcontrib><creatorcontrib>Breydo, Leonid</creatorcontrib><creatorcontrib>Merkler, David J.</creatorcontrib><title>Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax</title><title>Protein expression and purification</title><addtitle>Protein Expr Purif</addtitle><description>We have successfully truncated and recombinantly-expressed 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and d-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful in treatment of malaria.
•The novel truncation and expression of Plasmodium falciparum DXS and Plasmodium vivax DXR.•Enzymatic characterization by steady-state kinetics, inhibition, and binding constants.•Confirmed previous reports of a random sequential binding mechanism for both P. falciparum and P. vivax DXS.</description><subject>1-Deoxy-d-xylulose-5-phosphate synthase</subject><subject>Amino Acid Sequence</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Glyceraldehyde 3-Phosphate - metabolism</subject><subject>Isoprenoids</subject><subject>Kinetics</subject><subject>Malaria</subject><subject>Methylerythritol phosphate pathway</subject><subject>Molecular Sequence Data</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium vivax</subject><subject>Plasmodium vivax - enzymology</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pyruvic Acid - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Transferases - metabolism</subject><issn>1046-5928</issn><issn>1096-0279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1TAQhSMEoqXwAGyQlyyai534JxESUlXxJxXRBUjsLF97cuMqsYPtXDV9U94Gp7dUZYNYeeQ555uxdYriJcEbggl_c7WZYNpUmLANqTYY14-KY4JbXuJKtI_XmvKStVVzVDyL8QpjQjhmT4ujivO2bak4Ln59Ad0rZ2OyGm2tM9btkHXR7voUUecDIqUBf72UpvyxDPPgI5SsvOx9nHqVAMXFpV5FOEWpBwTuZhkBaZXUsNysrPW2syEmFEDpZL1DvkM2-imA89bkof6WAdHGPPnWMKpBBatKrea4QqbgU14xnqLLQcXRGzuPqFODtpMKuVTOPOzs7V5dPy-eZEWEF3fnSfH9w_tv55_Ki68fP5-fXZSaNjSVBIhoGma2YKAD0tBGK6YUZTXFHesEFQKq2nBWiZozqlvBtpRRteWCGaHq-qR4d-BO83YEo8GloAY5BTuqsEivrPy742wvd34vqaha1uAMeH0HCP7nDDHJ0UYNw6Ac-DlKIkTdYswb9h9SjtuqaniTpeQg1cHHGKC734hguaZHXsmcHrmmR5JK5vRkz6uHT7l3_IlLFrw9CCB_6N5CkFFbcBqMDaCTNN7-A_8bwmfcvQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Battistini, Matthew R.</creator><creator>Shoji, Christopher</creator><creator>Handa, Sumit</creator><creator>Breydo, Leonid</creator><creator>Merkler, David J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6173-0152</orcidid><orcidid>https://orcid.org/0000-0003-4666-2301</orcidid></search><sort><creationdate>20160401</creationdate><title>Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax</title><author>Battistini, Matthew R. ; Shoji, Christopher ; Handa, Sumit ; Breydo, Leonid ; Merkler, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>1-Deoxy-d-xylulose-5-phosphate synthase</topic><topic>Amino Acid Sequence</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Glyceraldehyde 3-Phosphate - metabolism</topic><topic>Isoprenoids</topic><topic>Kinetics</topic><topic>Malaria</topic><topic>Methylerythritol phosphate pathway</topic><topic>Molecular Sequence Data</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium vivax</topic><topic>Plasmodium vivax - enzymology</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pyruvic Acid - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Transferases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battistini, Matthew R.</creatorcontrib><creatorcontrib>Shoji, Christopher</creatorcontrib><creatorcontrib>Handa, Sumit</creatorcontrib><creatorcontrib>Breydo, Leonid</creatorcontrib><creatorcontrib>Merkler, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein expression and purification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battistini, Matthew R.</au><au>Shoji, Christopher</au><au>Handa, Sumit</au><au>Breydo, Leonid</au><au>Merkler, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax</atitle><jtitle>Protein expression and purification</jtitle><addtitle>Protein Expr Purif</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>120</volume><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>1046-5928</issn><eissn>1096-0279</eissn><abstract>We have successfully truncated and recombinantly-expressed 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and d-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful in treatment of malaria.
•The novel truncation and expression of Plasmodium falciparum DXS and Plasmodium vivax DXR.•Enzymatic characterization by steady-state kinetics, inhibition, and binding constants.•Confirmed previous reports of a random sequential binding mechanism for both P. falciparum and P. vivax DXS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26699947</pmid><doi>10.1016/j.pep.2015.12.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6173-0152</orcidid><orcidid>https://orcid.org/0000-0003-4666-2301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-5928 |
ispartof | Protein expression and purification, 2016-04, Vol.120, p.16-27 |
issn | 1046-5928 1096-0279 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729580 |
source | Elsevier |
subjects | 1-Deoxy-d-xylulose-5-phosphate synthase Amino Acid Sequence Catalytic Domain Cloning, Molecular Glyceraldehyde 3-Phosphate - metabolism Isoprenoids Kinetics Malaria Methylerythritol phosphate pathway Molecular Sequence Data Plasmodium falciparum Plasmodium falciparum - enzymology Plasmodium vivax Plasmodium vivax - enzymology Protozoan Proteins - metabolism Pyruvic Acid - metabolism Recombinant Proteins - metabolism Sequence Alignment Transferases - metabolism |
title | Mechanistic binding insights for 1-deoxy-d-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20binding%20insights%20for%201-deoxy-d-Xylulose-5-Phosphate%20synthase,%20the%20enzyme%20catalyzing%20the%20first%20reaction%20of%20isoprenoid%20biosynthesis%20in%20the%20malaria-causing%20protists,%20Plasmodium%20falciparum%20and%20Plasmodium%20vivax&rft.jtitle=Protein%20expression%20and%20purification&rft.au=Battistini,%20Matthew%20R.&rft.date=2016-04-01&rft.volume=120&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=1046-5928&rft.eissn=1096-0279&rft_id=info:doi/10.1016/j.pep.2015.12.003&rft_dat=%3Cproquest_pubme%3E1760922868%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-1e17885dbedefe1848ca5aa45340f5f7477e23d65273654c975b454ab675d7a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760922868&rft_id=info:pmid/26699947&rfr_iscdi=true |