Loading…
Characterizing a distal muscle enhancer in the mouse Igf2 locus
Insulin-like growth factor-2 (IGF2) is highly expressed in skeletal muscle and was identified as a quantitative trait locus for muscle mass. Yet little is known about mechanisms of its regulation in muscle. Recently, a DNA segment found ∼100 kb from the Igf2 gene was identified as a possible muscle...
Saved in:
Published in: | Physiological genomics 2016-02, Vol.48 (2), p.167-172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insulin-like growth factor-2 (IGF2) is highly expressed in skeletal muscle and was identified as a quantitative trait locus for muscle mass. Yet little is known about mechanisms of its regulation in muscle. Recently, a DNA segment found ∼100 kb from the Igf2 gene was identified as a possible muscle transcriptional control element. Here we have developed an in vivo reporter system to assess this putative enhancer by substituting nuclear (n) EGFP for Igf2 coding exons in a bacterial artificial chromosome containing the mouse Igf2 - H19 chromosomal locus. After stable transfection into a mesenchymal stem cell line, individual clones were converted to myoblasts and underwent progressive muscle-specific gene expression and myotube formation in differentiation medium. Transgenic mRNA and nuclear-targeted enhanced green fluorescent protein were produced coincident with endogenous Igf2 mRNA, but only in lines containing an intact distal conserved DNA element. Our results show that a 294 bp DNA fragment containing two E-boxes is a necessary and sufficient long-range enhancer for induction of Igf2 gene transcription during skeletal muscle differentiation and provides a robust experimental platform for its further functional dissection. |
---|---|
ISSN: | 1094-8341 1531-2267 |
DOI: | 10.1152/physiolgenomics.00095.2015 |