Loading…
Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions
Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 str...
Saved in:
Published in: | Scientific reports 2016-01, Vol.6 (1), p.20069, Article 20069 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3 |
container_end_page | |
container_issue | 1 |
container_start_page | 20069 |
container_title | Scientific reports |
container_volume | 6 |
creator | Sumitomo, Tomoko Nakata, Masanobu Higashino, Miharu Yamaguchi, Masaya Kawabata, Shigetada |
description | Group A
Streptococcus
(GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. |
doi_str_mv | 10.1038/srep20069 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899046912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</originalsourceid><addsrcrecordid>eNplkdFqFDEUhoNYbGl74QtIwCuF1SSTmZ3cCKW0VSh4oV6HM5mT3SzZZEwyRV-gz222W5cVc5PA_53_nJOfkNecfeCs6T_mhJNgrFMvyJlgsl2IRoiXR-9TcpnzhtXTCiW5ekVORdcLwdr-jDzepThP9Ip-K9WnRBONmTPFX5OPrmS6nrcQ6OQhb12IKwzUxkQHMAWTA09LgpB9NFBcDBRMirlWT66s0e_0AVJymOiDg8o6g97PHhItbrUudDMHsyvMF-TEgs94-Xyfkx-3N9-vPy_uv959ub66X5iWybIYpLSmU6LlOC4H1QymtdIqOSqumOAISzPW1awCQBwHa0AYrlrbSWHGgWFzTj7tfad52OJoMNQFvJ6S20L6rSM4_a8S3Fqv4oOWy4b3XFaDt88GKf6cMRe9iXMKdWbNe6WY7BQXlXq3p57-I6E9dOBM71LTh9Qq--Z4pAP5N6MKvN8DuUphhemo5X9ufwDRhKcm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899046912</pqid></control><display><type>article</type><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</creator><creatorcontrib>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</creatorcontrib><description>Group A
Streptococcus
(GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20069</identifier><identifier>PMID: 26822058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 631/326/421 ; 631/326/88 ; Amino acids ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Translocation - genetics ; Binding sites ; Caco-2 Cells ; Carrier Proteins - genetics ; Epithelial cells ; Epithelial Cells - metabolism ; Epithelial Cells - microbiology ; Host-Pathogen Interactions - genetics ; Humanities and Social Sciences ; Humans ; Infections ; Localization ; Lysine ; MARVEL Domain Containing 2 Protein - genetics ; MARVEL Domain Containing 2 Protein - metabolism ; multidisciplinary ; Mutagenesis, Site-Directed ; Pathogens ; Phosphopyruvate hydratase ; Phosphopyruvate Hydratase - genetics ; Phosphopyruvate Hydratase - metabolism ; Plasminogen - genetics ; Plasminogen - metabolism ; Proteins ; Quantitative analysis ; Science ; Site-directed mutagenesis ; Species Specificity ; Streptococcus ; Streptococcus infections ; Streptococcus pyogenes - metabolism ; Streptococcus pyogenes - pathogenicity ; Surface Plasmon Resonance ; Tight junctions ; Tight Junctions - metabolism ; Tight Junctions - microbiology ; Translocation</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.20069, Article 20069</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</citedby><cites>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899046912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899046912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26822058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sumitomo, Tomoko</creatorcontrib><creatorcontrib>Nakata, Masanobu</creatorcontrib><creatorcontrib>Higashino, Miharu</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Kawabata, Shigetada</creatorcontrib><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Group A
Streptococcus
(GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</description><subject>13/1</subject><subject>631/326/421</subject><subject>631/326/88</subject><subject>Amino acids</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Translocation - genetics</subject><subject>Binding sites</subject><subject>Caco-2 Cells</subject><subject>Carrier Proteins - genetics</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - microbiology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>Localization</subject><subject>Lysine</subject><subject>MARVEL Domain Containing 2 Protein - genetics</subject><subject>MARVEL Domain Containing 2 Protein - metabolism</subject><subject>multidisciplinary</subject><subject>Mutagenesis, Site-Directed</subject><subject>Pathogens</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphopyruvate Hydratase - genetics</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Plasminogen - genetics</subject><subject>Plasminogen - metabolism</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Science</subject><subject>Site-directed mutagenesis</subject><subject>Species Specificity</subject><subject>Streptococcus</subject><subject>Streptococcus infections</subject><subject>Streptococcus pyogenes - metabolism</subject><subject>Streptococcus pyogenes - pathogenicity</subject><subject>Surface Plasmon Resonance</subject><subject>Tight junctions</subject><subject>Tight Junctions - metabolism</subject><subject>Tight Junctions - microbiology</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkdFqFDEUhoNYbGl74QtIwCuF1SSTmZ3cCKW0VSh4oV6HM5mT3SzZZEwyRV-gz222W5cVc5PA_53_nJOfkNecfeCs6T_mhJNgrFMvyJlgsl2IRoiXR-9TcpnzhtXTCiW5ekVORdcLwdr-jDzepThP9Ip-K9WnRBONmTPFX5OPrmS6nrcQ6OQhb12IKwzUxkQHMAWTA09LgpB9NFBcDBRMirlWT66s0e_0AVJymOiDg8o6g97PHhItbrUudDMHsyvMF-TEgs94-Xyfkx-3N9-vPy_uv959ub66X5iWybIYpLSmU6LlOC4H1QymtdIqOSqumOAISzPW1awCQBwHa0AYrlrbSWHGgWFzTj7tfad52OJoMNQFvJ6S20L6rSM4_a8S3Fqv4oOWy4b3XFaDt88GKf6cMRe9iXMKdWbNe6WY7BQXlXq3p57-I6E9dOBM71LTh9Qq--Z4pAP5N6MKvN8DuUphhemo5X9ufwDRhKcm</recordid><startdate>20160129</startdate><enddate>20160129</enddate><creator>Sumitomo, Tomoko</creator><creator>Nakata, Masanobu</creator><creator>Higashino, Miharu</creator><creator>Yamaguchi, Masaya</creator><creator>Kawabata, Shigetada</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20160129</creationdate><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><author>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>631/326/421</topic><topic>631/326/88</topic><topic>Amino acids</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Translocation - genetics</topic><topic>Binding sites</topic><topic>Caco-2 Cells</topic><topic>Carrier Proteins - genetics</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - microbiology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>Localization</topic><topic>Lysine</topic><topic>MARVEL Domain Containing 2 Protein - genetics</topic><topic>MARVEL Domain Containing 2 Protein - metabolism</topic><topic>multidisciplinary</topic><topic>Mutagenesis, Site-Directed</topic><topic>Pathogens</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphopyruvate Hydratase - genetics</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Plasminogen - genetics</topic><topic>Plasminogen - metabolism</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Science</topic><topic>Site-directed mutagenesis</topic><topic>Species Specificity</topic><topic>Streptococcus</topic><topic>Streptococcus infections</topic><topic>Streptococcus pyogenes - metabolism</topic><topic>Streptococcus pyogenes - pathogenicity</topic><topic>Surface Plasmon Resonance</topic><topic>Tight junctions</topic><topic>Tight Junctions - metabolism</topic><topic>Tight Junctions - microbiology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumitomo, Tomoko</creatorcontrib><creatorcontrib>Nakata, Masanobu</creatorcontrib><creatorcontrib>Higashino, Miharu</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Kawabata, Shigetada</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumitomo, Tomoko</au><au>Nakata, Masanobu</au><au>Higashino, Miharu</au><au>Yamaguchi, Masaya</au><au>Kawabata, Shigetada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-29</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20069</spage><pages>20069-</pages><artnum>20069</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Group A
Streptococcus
(GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26822058</pmid><doi>10.1038/srep20069</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-01, Vol.6 (1), p.20069, Article 20069 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731814 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 631/326/421 631/326/88 Amino acids Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Translocation - genetics Binding sites Caco-2 Cells Carrier Proteins - genetics Epithelial cells Epithelial Cells - metabolism Epithelial Cells - microbiology Host-Pathogen Interactions - genetics Humanities and Social Sciences Humans Infections Localization Lysine MARVEL Domain Containing 2 Protein - genetics MARVEL Domain Containing 2 Protein - metabolism multidisciplinary Mutagenesis, Site-Directed Pathogens Phosphopyruvate hydratase Phosphopyruvate Hydratase - genetics Phosphopyruvate Hydratase - metabolism Plasminogen - genetics Plasminogen - metabolism Proteins Quantitative analysis Science Site-directed mutagenesis Species Specificity Streptococcus Streptococcus infections Streptococcus pyogenes - metabolism Streptococcus pyogenes - pathogenicity Surface Plasmon Resonance Tight junctions Tight Junctions - metabolism Tight Junctions - microbiology Translocation |
title | Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20A%20Streptococcus%20exploits%20human%20plasminogen%20for%20bacterial%20translocation%20across%20epithelial%20barrier%20via%20tricellular%20tight%20junctions&rft.jtitle=Scientific%20reports&rft.au=Sumitomo,%20Tomoko&rft.date=2016-01-29&rft.volume=6&rft.issue=1&rft.spage=20069&rft.pages=20069-&rft.artnum=20069&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20069&rft_dat=%3Cproquest_pubme%3E1899046912%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899046912&rft_id=info:pmid/26822058&rfr_iscdi=true |