Loading…

Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions

Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 str...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-01, Vol.6 (1), p.20069, Article 20069
Main Authors: Sumitomo, Tomoko, Nakata, Masanobu, Higashino, Miharu, Yamaguchi, Masaya, Kawabata, Shigetada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3
cites cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3
container_end_page
container_issue 1
container_start_page 20069
container_title Scientific reports
container_volume 6
creator Sumitomo, Tomoko
Nakata, Masanobu
Higashino, Miharu
Yamaguchi, Masaya
Kawabata, Shigetada
description Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.
doi_str_mv 10.1038/srep20069
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899046912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</originalsourceid><addsrcrecordid>eNplkdFqFDEUhoNYbGl74QtIwCuF1SSTmZ3cCKW0VSh4oV6HM5mT3SzZZEwyRV-gz222W5cVc5PA_53_nJOfkNecfeCs6T_mhJNgrFMvyJlgsl2IRoiXR-9TcpnzhtXTCiW5ekVORdcLwdr-jDzepThP9Ip-K9WnRBONmTPFX5OPrmS6nrcQ6OQhb12IKwzUxkQHMAWTA09LgpB9NFBcDBRMirlWT66s0e_0AVJymOiDg8o6g97PHhItbrUudDMHsyvMF-TEgs94-Xyfkx-3N9-vPy_uv959ub66X5iWybIYpLSmU6LlOC4H1QymtdIqOSqumOAISzPW1awCQBwHa0AYrlrbSWHGgWFzTj7tfad52OJoMNQFvJ6S20L6rSM4_a8S3Fqv4oOWy4b3XFaDt88GKf6cMRe9iXMKdWbNe6WY7BQXlXq3p57-I6E9dOBM71LTh9Qq--Z4pAP5N6MKvN8DuUphhemo5X9ufwDRhKcm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899046912</pqid></control><display><type>article</type><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</creator><creatorcontrib>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</creatorcontrib><description>Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20069</identifier><identifier>PMID: 26822058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 631/326/421 ; 631/326/88 ; Amino acids ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Translocation - genetics ; Binding sites ; Caco-2 Cells ; Carrier Proteins - genetics ; Epithelial cells ; Epithelial Cells - metabolism ; Epithelial Cells - microbiology ; Host-Pathogen Interactions - genetics ; Humanities and Social Sciences ; Humans ; Infections ; Localization ; Lysine ; MARVEL Domain Containing 2 Protein - genetics ; MARVEL Domain Containing 2 Protein - metabolism ; multidisciplinary ; Mutagenesis, Site-Directed ; Pathogens ; Phosphopyruvate hydratase ; Phosphopyruvate Hydratase - genetics ; Phosphopyruvate Hydratase - metabolism ; Plasminogen - genetics ; Plasminogen - metabolism ; Proteins ; Quantitative analysis ; Science ; Site-directed mutagenesis ; Species Specificity ; Streptococcus ; Streptococcus infections ; Streptococcus pyogenes - metabolism ; Streptococcus pyogenes - pathogenicity ; Surface Plasmon Resonance ; Tight junctions ; Tight Junctions - metabolism ; Tight Junctions - microbiology ; Translocation</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.20069, Article 20069</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</citedby><cites>FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899046912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899046912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26822058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sumitomo, Tomoko</creatorcontrib><creatorcontrib>Nakata, Masanobu</creatorcontrib><creatorcontrib>Higashino, Miharu</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Kawabata, Shigetada</creatorcontrib><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</description><subject>13/1</subject><subject>631/326/421</subject><subject>631/326/88</subject><subject>Amino acids</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Translocation - genetics</subject><subject>Binding sites</subject><subject>Caco-2 Cells</subject><subject>Carrier Proteins - genetics</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - microbiology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>Localization</subject><subject>Lysine</subject><subject>MARVEL Domain Containing 2 Protein - genetics</subject><subject>MARVEL Domain Containing 2 Protein - metabolism</subject><subject>multidisciplinary</subject><subject>Mutagenesis, Site-Directed</subject><subject>Pathogens</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphopyruvate Hydratase - genetics</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Plasminogen - genetics</subject><subject>Plasminogen - metabolism</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Science</subject><subject>Site-directed mutagenesis</subject><subject>Species Specificity</subject><subject>Streptococcus</subject><subject>Streptococcus infections</subject><subject>Streptococcus pyogenes - metabolism</subject><subject>Streptococcus pyogenes - pathogenicity</subject><subject>Surface Plasmon Resonance</subject><subject>Tight junctions</subject><subject>Tight Junctions - metabolism</subject><subject>Tight Junctions - microbiology</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkdFqFDEUhoNYbGl74QtIwCuF1SSTmZ3cCKW0VSh4oV6HM5mT3SzZZEwyRV-gz222W5cVc5PA_53_nJOfkNecfeCs6T_mhJNgrFMvyJlgsl2IRoiXR-9TcpnzhtXTCiW5ekVORdcLwdr-jDzepThP9Ip-K9WnRBONmTPFX5OPrmS6nrcQ6OQhb12IKwzUxkQHMAWTA09LgpB9NFBcDBRMirlWT66s0e_0AVJymOiDg8o6g97PHhItbrUudDMHsyvMF-TEgs94-Xyfkx-3N9-vPy_uv959ub66X5iWybIYpLSmU6LlOC4H1QymtdIqOSqumOAISzPW1awCQBwHa0AYrlrbSWHGgWFzTj7tfad52OJoMNQFvJ6S20L6rSM4_a8S3Fqv4oOWy4b3XFaDt88GKf6cMRe9iXMKdWbNe6WY7BQXlXq3p57-I6E9dOBM71LTh9Qq--Z4pAP5N6MKvN8DuUphhemo5X9ufwDRhKcm</recordid><startdate>20160129</startdate><enddate>20160129</enddate><creator>Sumitomo, Tomoko</creator><creator>Nakata, Masanobu</creator><creator>Higashino, Miharu</creator><creator>Yamaguchi, Masaya</creator><creator>Kawabata, Shigetada</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20160129</creationdate><title>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</title><author>Sumitomo, Tomoko ; Nakata, Masanobu ; Higashino, Miharu ; Yamaguchi, Masaya ; Kawabata, Shigetada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>631/326/421</topic><topic>631/326/88</topic><topic>Amino acids</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Translocation - genetics</topic><topic>Binding sites</topic><topic>Caco-2 Cells</topic><topic>Carrier Proteins - genetics</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - microbiology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>Localization</topic><topic>Lysine</topic><topic>MARVEL Domain Containing 2 Protein - genetics</topic><topic>MARVEL Domain Containing 2 Protein - metabolism</topic><topic>multidisciplinary</topic><topic>Mutagenesis, Site-Directed</topic><topic>Pathogens</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphopyruvate Hydratase - genetics</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Plasminogen - genetics</topic><topic>Plasminogen - metabolism</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Science</topic><topic>Site-directed mutagenesis</topic><topic>Species Specificity</topic><topic>Streptococcus</topic><topic>Streptococcus infections</topic><topic>Streptococcus pyogenes - metabolism</topic><topic>Streptococcus pyogenes - pathogenicity</topic><topic>Surface Plasmon Resonance</topic><topic>Tight junctions</topic><topic>Tight Junctions - metabolism</topic><topic>Tight Junctions - microbiology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumitomo, Tomoko</creatorcontrib><creatorcontrib>Nakata, Masanobu</creatorcontrib><creatorcontrib>Higashino, Miharu</creatorcontrib><creatorcontrib>Yamaguchi, Masaya</creatorcontrib><creatorcontrib>Kawabata, Shigetada</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumitomo, Tomoko</au><au>Nakata, Masanobu</au><au>Higashino, Miharu</au><au>Yamaguchi, Masaya</au><au>Kawabata, Shigetada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-29</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20069</spage><pages>20069-</pages><artnum>20069</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26822058</pmid><doi>10.1038/srep20069</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-01, Vol.6 (1), p.20069, Article 20069
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731814
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
631/326/421
631/326/88
Amino acids
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Translocation - genetics
Binding sites
Caco-2 Cells
Carrier Proteins - genetics
Epithelial cells
Epithelial Cells - metabolism
Epithelial Cells - microbiology
Host-Pathogen Interactions - genetics
Humanities and Social Sciences
Humans
Infections
Localization
Lysine
MARVEL Domain Containing 2 Protein - genetics
MARVEL Domain Containing 2 Protein - metabolism
multidisciplinary
Mutagenesis, Site-Directed
Pathogens
Phosphopyruvate hydratase
Phosphopyruvate Hydratase - genetics
Phosphopyruvate Hydratase - metabolism
Plasminogen - genetics
Plasminogen - metabolism
Proteins
Quantitative analysis
Science
Site-directed mutagenesis
Species Specificity
Streptococcus
Streptococcus infections
Streptococcus pyogenes - metabolism
Streptococcus pyogenes - pathogenicity
Surface Plasmon Resonance
Tight junctions
Tight Junctions - metabolism
Tight Junctions - microbiology
Translocation
title Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20A%20Streptococcus%20exploits%20human%20plasminogen%20for%20bacterial%20translocation%20across%20epithelial%20barrier%20via%20tricellular%20tight%20junctions&rft.jtitle=Scientific%20reports&rft.au=Sumitomo,%20Tomoko&rft.date=2016-01-29&rft.volume=6&rft.issue=1&rft.spage=20069&rft.pages=20069-&rft.artnum=20069&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20069&rft_dat=%3Cproquest_pubme%3E1899046912%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-b44fc69251ed7b93bc5f4f94d919021ea7cd682f9aaeedbfca2c195f642cdb0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899046912&rft_id=info:pmid/26822058&rfr_iscdi=true