Loading…
Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases
The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage...
Saved in:
Published in: | Scientific reports 2016-02, Vol.6 (1), p.20376-20376, Article 20376 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3 |
container_end_page | 20376 |
container_issue | 1 |
container_start_page | 20376 |
container_title | Scientific reports |
container_volume | 6 |
creator | Wilson, Raphael A. Liu, Jing Xu, Lin Annis, James Helmig, Sara Moore, Gregory Timmerman, Casey Grandori, Carla Zheng, Yanbin Skapek, Stephen X. |
description | The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit,
Mtor
, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation. |
doi_str_mv | 10.1038/srep20376 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4742887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899016332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</originalsourceid><addsrcrecordid>eNplkV1LHDEUhkOpVFEv-gdKoDetsJqcZGaSG0GWVgVxoeh1yM6cGaMzyTaZEfbfN2W3y1Zzk_Px8J5zeAn5zNk5Z0JdpIgrYKIqP5AjYLKYgQD4uBcfktOUnll-BWjJ9SdyCKWSVSHkEXm8x86O7hVpxG7qcxg8DS113o3O9jSNuEo5o-kFexxzZViHDj0ml-hyTYeHxS9qfUPD-ISRvjhvE6YTctDaPuHp9j8mjz9_PMxvZneL69v51d2slkKNM122YlkVWABa2za6qbhsWdsIxYHLJVa8aXLOgKHWFqQoFCsU1lAIhRasOCaXG93VtBywqdGP0fZmFd1g49oE68z_He-eTBdejawkKFVlgW9bgRh-T5hGM7hUY99bj2FKhlcl6BIkExn9-gZ9DlP0-TzDldaMl0JApr5vqDqGlK1pd8twZv76ZXZ-ZfbL_vY78p87GTjbACm3fIdxb-Q7tT8wZJ-6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899016332</pqid></control><display><type>article</type><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</creator><creatorcontrib>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</creatorcontrib><description>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit,
Mtor
, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20376</identifier><identifier>PMID: 26847534</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/89 ; 14 ; 14/34 ; 14/56 ; 14/63 ; 38 ; 38/47 ; 38/77 ; 38/90 ; 45/41 ; 631/136/142 ; 631/136/2091 ; 631/337/505 ; 631/532/2439 ; 631/80/86 ; Adaptor Proteins, Signal Transducing - antagonists & inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Cell Cycle Checkpoints ; Cell Differentiation ; Cell Line ; Cell Proliferation - drug effects ; Cyclin-dependent kinase 4 ; Gene expression ; Humanities and Social Sciences ; Kinases ; Mice ; Microscopy, Fluorescence ; multidisciplinary ; Muscle Development - drug effects ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myogenesis ; Myogenin - metabolism ; Piperazines - pharmacology ; Progenitor cells ; Protein Array Analysis ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Pyridines - pharmacology ; Rapamycin ; Real-Time Polymerase Chain Reaction ; Regulatory-Associated Protein of mTOR ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; RNA-mediated interference ; Science ; Sequence Analysis, RNA ; TOR protein ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription activation ; Transcription factors</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.20376-20376, Article 20376</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</citedby><cites>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899016332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899016332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26847534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Raphael A.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Annis, James</creatorcontrib><creatorcontrib>Helmig, Sara</creatorcontrib><creatorcontrib>Moore, Gregory</creatorcontrib><creatorcontrib>Timmerman, Casey</creatorcontrib><creatorcontrib>Grandori, Carla</creatorcontrib><creatorcontrib>Zheng, Yanbin</creatorcontrib><creatorcontrib>Skapek, Stephen X.</creatorcontrib><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit,
Mtor
, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14</subject><subject>14/34</subject><subject>14/56</subject><subject>14/63</subject><subject>38</subject><subject>38/47</subject><subject>38/77</subject><subject>38/90</subject><subject>45/41</subject><subject>631/136/142</subject><subject>631/136/2091</subject><subject>631/337/505</subject><subject>631/532/2439</subject><subject>631/80/86</subject><subject>Adaptor Proteins, Signal Transducing - antagonists & inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cyclin-dependent kinase 4</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Muscle Development - drug effects</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myogenesis</subject><subject>Myogenin - metabolism</subject><subject>Piperazines - pharmacology</subject><subject>Progenitor cells</subject><subject>Protein Array Analysis</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Rapamycin</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Regulatory-Associated Protein of mTOR</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-mediated interference</subject><subject>Science</subject><subject>Sequence Analysis, RNA</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LHDEUhkOpVFEv-gdKoDetsJqcZGaSG0GWVgVxoeh1yM6cGaMzyTaZEfbfN2W3y1Zzk_Px8J5zeAn5zNk5Z0JdpIgrYKIqP5AjYLKYgQD4uBcfktOUnll-BWjJ9SdyCKWSVSHkEXm8x86O7hVpxG7qcxg8DS113o3O9jSNuEo5o-kFexxzZViHDj0ml-hyTYeHxS9qfUPD-ISRvjhvE6YTctDaPuHp9j8mjz9_PMxvZneL69v51d2slkKNM122YlkVWABa2za6qbhsWdsIxYHLJVa8aXLOgKHWFqQoFCsU1lAIhRasOCaXG93VtBywqdGP0fZmFd1g49oE68z_He-eTBdejawkKFVlgW9bgRh-T5hGM7hUY99bj2FKhlcl6BIkExn9-gZ9DlP0-TzDldaMl0JApr5vqDqGlK1pd8twZv76ZXZ-ZfbL_vY78p87GTjbACm3fIdxb-Q7tT8wZJ-6</recordid><startdate>20160205</startdate><enddate>20160205</enddate><creator>Wilson, Raphael A.</creator><creator>Liu, Jing</creator><creator>Xu, Lin</creator><creator>Annis, James</creator><creator>Helmig, Sara</creator><creator>Moore, Gregory</creator><creator>Timmerman, Casey</creator><creator>Grandori, Carla</creator><creator>Zheng, Yanbin</creator><creator>Skapek, Stephen X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160205</creationdate><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><author>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14</topic><topic>14/34</topic><topic>14/56</topic><topic>14/63</topic><topic>38</topic><topic>38/47</topic><topic>38/77</topic><topic>38/90</topic><topic>45/41</topic><topic>631/136/142</topic><topic>631/136/2091</topic><topic>631/337/505</topic><topic>631/532/2439</topic><topic>631/80/86</topic><topic>Adaptor Proteins, Signal Transducing - antagonists & inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cyclin-dependent kinase 4</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Muscle Development - drug effects</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myogenesis</topic><topic>Myogenin - metabolism</topic><topic>Piperazines - pharmacology</topic><topic>Progenitor cells</topic><topic>Protein Array Analysis</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Rapamycin</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Regulatory-Associated Protein of mTOR</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-mediated interference</topic><topic>Science</topic><topic>Sequence Analysis, RNA</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Raphael A.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Annis, James</creatorcontrib><creatorcontrib>Helmig, Sara</creatorcontrib><creatorcontrib>Moore, Gregory</creatorcontrib><creatorcontrib>Timmerman, Casey</creatorcontrib><creatorcontrib>Grandori, Carla</creatorcontrib><creatorcontrib>Zheng, Yanbin</creatorcontrib><creatorcontrib>Skapek, Stephen X.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Raphael A.</au><au>Liu, Jing</au><au>Xu, Lin</au><au>Annis, James</au><au>Helmig, Sara</au><au>Moore, Gregory</au><au>Timmerman, Casey</au><au>Grandori, Carla</au><au>Zheng, Yanbin</au><au>Skapek, Stephen X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-05</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20376</spage><epage>20376</epage><pages>20376-20376</pages><artnum>20376</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit,
Mtor
, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26847534</pmid><doi>10.1038/srep20376</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.20376-20376, Article 20376 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4742887 |
source | Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/106 13/109 13/31 13/89 14 14/34 14/56 14/63 38 38/47 38/77 38/90 45/41 631/136/142 631/136/2091 631/337/505 631/532/2439 631/80/86 Adaptor Proteins, Signal Transducing - antagonists & inhibitors Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Cell Cycle Checkpoints Cell Differentiation Cell Line Cell Proliferation - drug effects Cyclin-dependent kinase 4 Gene expression Humanities and Social Sciences Kinases Mice Microscopy, Fluorescence multidisciplinary Muscle Development - drug effects Myoblasts Myoblasts - cytology Myoblasts - metabolism Myogenesis Myogenin - metabolism Piperazines - pharmacology Progenitor cells Protein Array Analysis Protein Kinases - chemistry Protein Kinases - genetics Protein Kinases - metabolism Pyridines - pharmacology Rapamycin Real-Time Polymerase Chain Reaction Regulatory-Associated Protein of mTOR RNA Interference RNA, Messenger - metabolism RNA, Small Interfering - metabolism RNA-mediated interference Science Sequence Analysis, RNA TOR protein TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Transcription activation Transcription factors |
title | Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20regulation%20of%20initial%20steps%20in%20skeletal%20myogenesis%20by%20mTOR%20and%20other%20kinases&rft.jtitle=Scientific%20reports&rft.au=Wilson,%20Raphael%20A.&rft.date=2016-02-05&rft.volume=6&rft.issue=1&rft.spage=20376&rft.epage=20376&rft.pages=20376-20376&rft.artnum=20376&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20376&rft_dat=%3Cproquest_pubme%3E1899016332%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899016332&rft_id=info:pmid/26847534&rfr_iscdi=true |