Loading…

Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases

The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-02, Vol.6 (1), p.20376-20376, Article 20376
Main Authors: Wilson, Raphael A., Liu, Jing, Xu, Lin, Annis, James, Helmig, Sara, Moore, Gregory, Timmerman, Casey, Grandori, Carla, Zheng, Yanbin, Skapek, Stephen X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3
cites cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3
container_end_page 20376
container_issue 1
container_start_page 20376
container_title Scientific reports
container_volume 6
creator Wilson, Raphael A.
Liu, Jing
Xu, Lin
Annis, James
Helmig, Sara
Moore, Gregory
Timmerman, Casey
Grandori, Carla
Zheng, Yanbin
Skapek, Stephen X.
description The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor , we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.
doi_str_mv 10.1038/srep20376
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4742887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899016332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</originalsourceid><addsrcrecordid>eNplkV1LHDEUhkOpVFEv-gdKoDetsJqcZGaSG0GWVgVxoeh1yM6cGaMzyTaZEfbfN2W3y1Zzk_Px8J5zeAn5zNk5Z0JdpIgrYKIqP5AjYLKYgQD4uBcfktOUnll-BWjJ9SdyCKWSVSHkEXm8x86O7hVpxG7qcxg8DS113o3O9jSNuEo5o-kFexxzZViHDj0ml-hyTYeHxS9qfUPD-ISRvjhvE6YTctDaPuHp9j8mjz9_PMxvZneL69v51d2slkKNM122YlkVWABa2za6qbhsWdsIxYHLJVa8aXLOgKHWFqQoFCsU1lAIhRasOCaXG93VtBywqdGP0fZmFd1g49oE68z_He-eTBdejawkKFVlgW9bgRh-T5hGM7hUY99bj2FKhlcl6BIkExn9-gZ9DlP0-TzDldaMl0JApr5vqDqGlK1pd8twZv76ZXZ-ZfbL_vY78p87GTjbACm3fIdxb-Q7tT8wZJ-6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899016332</pqid></control><display><type>article</type><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</creator><creatorcontrib>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</creatorcontrib><description>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor , we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20376</identifier><identifier>PMID: 26847534</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/89 ; 14 ; 14/34 ; 14/56 ; 14/63 ; 38 ; 38/47 ; 38/77 ; 38/90 ; 45/41 ; 631/136/142 ; 631/136/2091 ; 631/337/505 ; 631/532/2439 ; 631/80/86 ; Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Cell Cycle Checkpoints ; Cell Differentiation ; Cell Line ; Cell Proliferation - drug effects ; Cyclin-dependent kinase 4 ; Gene expression ; Humanities and Social Sciences ; Kinases ; Mice ; Microscopy, Fluorescence ; multidisciplinary ; Muscle Development - drug effects ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myogenesis ; Myogenin - metabolism ; Piperazines - pharmacology ; Progenitor cells ; Protein Array Analysis ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Pyridines - pharmacology ; Rapamycin ; Real-Time Polymerase Chain Reaction ; Regulatory-Associated Protein of mTOR ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; RNA-mediated interference ; Science ; Sequence Analysis, RNA ; TOR protein ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription activation ; Transcription factors</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.20376-20376, Article 20376</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</citedby><cites>FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899016332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899016332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26847534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Raphael A.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Annis, James</creatorcontrib><creatorcontrib>Helmig, Sara</creatorcontrib><creatorcontrib>Moore, Gregory</creatorcontrib><creatorcontrib>Timmerman, Casey</creatorcontrib><creatorcontrib>Grandori, Carla</creatorcontrib><creatorcontrib>Zheng, Yanbin</creatorcontrib><creatorcontrib>Skapek, Stephen X.</creatorcontrib><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor , we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14</subject><subject>14/34</subject><subject>14/56</subject><subject>14/63</subject><subject>38</subject><subject>38/47</subject><subject>38/77</subject><subject>38/90</subject><subject>45/41</subject><subject>631/136/142</subject><subject>631/136/2091</subject><subject>631/337/505</subject><subject>631/532/2439</subject><subject>631/80/86</subject><subject>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cyclin-dependent kinase 4</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Muscle Development - drug effects</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myogenesis</subject><subject>Myogenin - metabolism</subject><subject>Piperazines - pharmacology</subject><subject>Progenitor cells</subject><subject>Protein Array Analysis</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Rapamycin</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Regulatory-Associated Protein of mTOR</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-mediated interference</subject><subject>Science</subject><subject>Sequence Analysis, RNA</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LHDEUhkOpVFEv-gdKoDetsJqcZGaSG0GWVgVxoeh1yM6cGaMzyTaZEfbfN2W3y1Zzk_Px8J5zeAn5zNk5Z0JdpIgrYKIqP5AjYLKYgQD4uBcfktOUnll-BWjJ9SdyCKWSVSHkEXm8x86O7hVpxG7qcxg8DS113o3O9jSNuEo5o-kFexxzZViHDj0ml-hyTYeHxS9qfUPD-ISRvjhvE6YTctDaPuHp9j8mjz9_PMxvZneL69v51d2slkKNM122YlkVWABa2za6qbhsWdsIxYHLJVa8aXLOgKHWFqQoFCsU1lAIhRasOCaXG93VtBywqdGP0fZmFd1g49oE68z_He-eTBdejawkKFVlgW9bgRh-T5hGM7hUY99bj2FKhlcl6BIkExn9-gZ9DlP0-TzDldaMl0JApr5vqDqGlK1pd8twZv76ZXZ-ZfbL_vY78p87GTjbACm3fIdxb-Q7tT8wZJ-6</recordid><startdate>20160205</startdate><enddate>20160205</enddate><creator>Wilson, Raphael A.</creator><creator>Liu, Jing</creator><creator>Xu, Lin</creator><creator>Annis, James</creator><creator>Helmig, Sara</creator><creator>Moore, Gregory</creator><creator>Timmerman, Casey</creator><creator>Grandori, Carla</creator><creator>Zheng, Yanbin</creator><creator>Skapek, Stephen X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160205</creationdate><title>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</title><author>Wilson, Raphael A. ; Liu, Jing ; Xu, Lin ; Annis, James ; Helmig, Sara ; Moore, Gregory ; Timmerman, Casey ; Grandori, Carla ; Zheng, Yanbin ; Skapek, Stephen X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14</topic><topic>14/34</topic><topic>14/56</topic><topic>14/63</topic><topic>38</topic><topic>38/47</topic><topic>38/77</topic><topic>38/90</topic><topic>45/41</topic><topic>631/136/142</topic><topic>631/136/2091</topic><topic>631/337/505</topic><topic>631/532/2439</topic><topic>631/80/86</topic><topic>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cyclin-dependent kinase 4</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Muscle Development - drug effects</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myogenesis</topic><topic>Myogenin - metabolism</topic><topic>Piperazines - pharmacology</topic><topic>Progenitor cells</topic><topic>Protein Array Analysis</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Rapamycin</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Regulatory-Associated Protein of mTOR</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-mediated interference</topic><topic>Science</topic><topic>Sequence Analysis, RNA</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Raphael A.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Annis, James</creatorcontrib><creatorcontrib>Helmig, Sara</creatorcontrib><creatorcontrib>Moore, Gregory</creatorcontrib><creatorcontrib>Timmerman, Casey</creatorcontrib><creatorcontrib>Grandori, Carla</creatorcontrib><creatorcontrib>Zheng, Yanbin</creatorcontrib><creatorcontrib>Skapek, Stephen X.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Raphael A.</au><au>Liu, Jing</au><au>Xu, Lin</au><au>Annis, James</au><au>Helmig, Sara</au><au>Moore, Gregory</au><au>Timmerman, Casey</au><au>Grandori, Carla</au><au>Zheng, Yanbin</au><au>Skapek, Stephen X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-05</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20376</spage><epage>20376</epage><pages>20376-20376</pages><artnum>20376</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor , we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26847534</pmid><doi>10.1038/srep20376</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.20376-20376, Article 20376
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4742887
source Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/106
13/109
13/31
13/89
14
14/34
14/56
14/63
38
38/47
38/77
38/90
45/41
631/136/142
631/136/2091
631/337/505
631/532/2439
631/80/86
Adaptor Proteins, Signal Transducing - antagonists & inhibitors
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Cell Cycle Checkpoints
Cell Differentiation
Cell Line
Cell Proliferation - drug effects
Cyclin-dependent kinase 4
Gene expression
Humanities and Social Sciences
Kinases
Mice
Microscopy, Fluorescence
multidisciplinary
Muscle Development - drug effects
Myoblasts
Myoblasts - cytology
Myoblasts - metabolism
Myogenesis
Myogenin - metabolism
Piperazines - pharmacology
Progenitor cells
Protein Array Analysis
Protein Kinases - chemistry
Protein Kinases - genetics
Protein Kinases - metabolism
Pyridines - pharmacology
Rapamycin
Real-Time Polymerase Chain Reaction
Regulatory-Associated Protein of mTOR
RNA Interference
RNA, Messenger - metabolism
RNA, Small Interfering - metabolism
RNA-mediated interference
Science
Sequence Analysis, RNA
TOR protein
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Transcription activation
Transcription factors
title Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20regulation%20of%20initial%20steps%20in%20skeletal%20myogenesis%20by%20mTOR%20and%20other%20kinases&rft.jtitle=Scientific%20reports&rft.au=Wilson,%20Raphael%20A.&rft.date=2016-02-05&rft.volume=6&rft.issue=1&rft.spage=20376&rft.epage=20376&rft.pages=20376-20376&rft.artnum=20376&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20376&rft_dat=%3Cproquest_pubme%3E1899016332%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-96f3b75e52eaafd9d714f0fd381214be71ddf0f020e99a24358058ec2538ea2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899016332&rft_id=info:pmid/26847534&rfr_iscdi=true