Loading…
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering
Abstract The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo . Composite hydrogels comprising copolymer macromers of N -isopropylacrylamide were fabricated throug...
Saved in:
Published in: | Biomaterials 2016-03, Vol.83, p.1-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | Biomaterials |
container_volume | 83 |
creator | Vo, T.N Shah, S.R Lu, S Tatara, A.M Lee, E.J Roh, T.T Tabata, Y Mikos, A.G |
description | Abstract The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo . Composite hydrogels comprising copolymer macromers of N -isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro . GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering. |
doi_str_mv | 10.1016/j.biomaterials.2015.12.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4754149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215010145</els_id><sourcerecordid>1768578008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83</originalsourceid><addsrcrecordid>eNqNkltr3DAQhUVpabZp_0IxfeqL3ZFsXdyHQEl6CQQKvTwLWZ515HqlrWQH9t9XZtOQ9mkfhBBzztEM3xDyhkJFgYp3Y9W5sDMzRmemVDGgvKKsAiaekA1VUpW8Bf6UbIA2rGwFZWfkRUoj5Dc07Dk5Y0LKWvB2Q75d-xHtbLoJi34xUzngNDk_FDbf5WR69IUNu31Ibsbi9tDHkBWp2IZYdMFjMbuUFizQD85j7sgPL8mzbe4LX93f5-Tnp48_Lr-UN18_X19-uCmtADWXtgMUXc17IU3fNgqFrS1wTmvDO5Wr-bTSGmlA2K2wDESrlGCW1i2TnarPycUxd790O-wt-jmaSe-j25l40ME4_W_Fu1s9hDvdSN7Qps0Bb-8DYvi9YJr1zqV1buMxLElT2daM8wbkCVKhuFQA6hQp5wqahmfp-6PUxpBSxO1D8xT0ilqP-jFqvaLWlOmMOptfPx7_wfqXbRZcHQWZF945jDpZh95i72JGrvvgTvvn4r8YmxfEWTP9wgOmMSzRrx6qUzbo7-vSrTtHOeToPOUfRovXfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765580445</pqid></control><display><type>article</type><title>Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering</title><source>ScienceDirect Freedom Collection</source><creator>Vo, T.N ; Shah, S.R ; Lu, S ; Tatara, A.M ; Lee, E.J ; Roh, T.T ; Tabata, Y ; Mikos, A.G</creator><creatorcontrib>Vo, T.N ; Shah, S.R ; Lu, S ; Tatara, A.M ; Lee, E.J ; Roh, T.T ; Tabata, Y ; Mikos, A.G</creatorcontrib><description>Abstract The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo . Composite hydrogels comprising copolymer macromers of N -isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro . GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.12.026</identifier><identifier>PMID: 26773659</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alkaline Phosphatase - metabolism ; Animals ; Biological Assay ; Biomedical materials ; Bone and Bones - diagnostic imaging ; Bone and Bones - drug effects ; Bone and Bones - physiology ; Bones ; Cells, Immobilized - cytology ; Cells, Immobilized - drug effects ; Cells, Immobilized - metabolism ; Critical size cranial defect ; Defects ; Dentistry ; Encapsulation ; Gelatin - pharmacology ; Gelatin microparticles ; Hydrogels ; Hydrogels - pharmacology ; In vitro testing ; Injections ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Microspheres ; Mineralization ; N-isopropylacrylamide ; Rats, Inbred F344 ; Tissue engineering ; Tissue Engineering - methods ; X-Ray Microtomography</subject><ispartof>Biomaterials, 2016-03, Vol.83, p.1-11</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83</citedby><cites>FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83</cites><orcidid>0000-0001-6831-1153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26773659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vo, T.N</creatorcontrib><creatorcontrib>Shah, S.R</creatorcontrib><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>Tatara, A.M</creatorcontrib><creatorcontrib>Lee, E.J</creatorcontrib><creatorcontrib>Roh, T.T</creatorcontrib><creatorcontrib>Tabata, Y</creatorcontrib><creatorcontrib>Mikos, A.G</creatorcontrib><title>Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo . Composite hydrogels comprising copolymer macromers of N -isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro . GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.</description><subject>Advanced Basic Science</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Biological Assay</subject><subject>Biomedical materials</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - physiology</subject><subject>Bones</subject><subject>Cells, Immobilized - cytology</subject><subject>Cells, Immobilized - drug effects</subject><subject>Cells, Immobilized - metabolism</subject><subject>Critical size cranial defect</subject><subject>Defects</subject><subject>Dentistry</subject><subject>Encapsulation</subject><subject>Gelatin - pharmacology</subject><subject>Gelatin microparticles</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>In vitro testing</subject><subject>Injections</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Microspheres</subject><subject>Mineralization</subject><subject>N-isopropylacrylamide</subject><subject>Rats, Inbred F344</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>X-Ray Microtomography</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkltr3DAQhUVpabZp_0IxfeqL3ZFsXdyHQEl6CQQKvTwLWZ515HqlrWQH9t9XZtOQ9mkfhBBzztEM3xDyhkJFgYp3Y9W5sDMzRmemVDGgvKKsAiaekA1VUpW8Bf6UbIA2rGwFZWfkRUoj5Dc07Dk5Y0LKWvB2Q75d-xHtbLoJi34xUzngNDk_FDbf5WR69IUNu31Ibsbi9tDHkBWp2IZYdMFjMbuUFizQD85j7sgPL8mzbe4LX93f5-Tnp48_Lr-UN18_X19-uCmtADWXtgMUXc17IU3fNgqFrS1wTmvDO5Wr-bTSGmlA2K2wDESrlGCW1i2TnarPycUxd790O-wt-jmaSe-j25l40ME4_W_Fu1s9hDvdSN7Qps0Bb-8DYvi9YJr1zqV1buMxLElT2daM8wbkCVKhuFQA6hQp5wqahmfp-6PUxpBSxO1D8xT0ilqP-jFqvaLWlOmMOptfPx7_wfqXbRZcHQWZF945jDpZh95i72JGrvvgTvvn4r8YmxfEWTP9wgOmMSzRrx6qUzbo7-vSrTtHOeToPOUfRovXfg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Vo, T.N</creator><creator>Shah, S.R</creator><creator>Lu, S</creator><creator>Tatara, A.M</creator><creator>Lee, E.J</creator><creator>Roh, T.T</creator><creator>Tabata, Y</creator><creator>Mikos, A.G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6831-1153</orcidid></search><sort><creationdate>20160301</creationdate><title>Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering</title><author>Vo, T.N ; Shah, S.R ; Lu, S ; Tatara, A.M ; Lee, E.J ; Roh, T.T ; Tabata, Y ; Mikos, A.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Biological Assay</topic><topic>Biomedical materials</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - physiology</topic><topic>Bones</topic><topic>Cells, Immobilized - cytology</topic><topic>Cells, Immobilized - drug effects</topic><topic>Cells, Immobilized - metabolism</topic><topic>Critical size cranial defect</topic><topic>Defects</topic><topic>Dentistry</topic><topic>Encapsulation</topic><topic>Gelatin - pharmacology</topic><topic>Gelatin microparticles</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>In vitro testing</topic><topic>Injections</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Microspheres</topic><topic>Mineralization</topic><topic>N-isopropylacrylamide</topic><topic>Rats, Inbred F344</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, T.N</creatorcontrib><creatorcontrib>Shah, S.R</creatorcontrib><creatorcontrib>Lu, S</creatorcontrib><creatorcontrib>Tatara, A.M</creatorcontrib><creatorcontrib>Lee, E.J</creatorcontrib><creatorcontrib>Roh, T.T</creatorcontrib><creatorcontrib>Tabata, Y</creatorcontrib><creatorcontrib>Mikos, A.G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, T.N</au><au>Shah, S.R</au><au>Lu, S</au><au>Tatara, A.M</au><au>Lee, E.J</au><au>Roh, T.T</au><au>Tabata, Y</au><au>Mikos, A.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>83</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo . Composite hydrogels comprising copolymer macromers of N -isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro . GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26773659</pmid><doi>10.1016/j.biomaterials.2015.12.026</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6831-1153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2016-03, Vol.83, p.1-11 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4754149 |
source | ScienceDirect Freedom Collection |
subjects | Advanced Basic Science Alkaline Phosphatase - metabolism Animals Biological Assay Biomedical materials Bone and Bones - diagnostic imaging Bone and Bones - drug effects Bone and Bones - physiology Bones Cells, Immobilized - cytology Cells, Immobilized - drug effects Cells, Immobilized - metabolism Critical size cranial defect Defects Dentistry Encapsulation Gelatin - pharmacology Gelatin microparticles Hydrogels Hydrogels - pharmacology In vitro testing Injections Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Microspheres Mineralization N-isopropylacrylamide Rats, Inbred F344 Tissue engineering Tissue Engineering - methods X-Ray Microtomography |
title | Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20dual-gelling%20cell-laden%20composite%20hydrogels%20for%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=Vo,%20T.N&rft.date=2016-03-01&rft.volume=83&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.12.026&rft_dat=%3Cproquest_pubme%3E1768578008%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c608t-cb0e6b35d67ad948e6c3c05513a5b8cb08cb97ca7a06cf6c20698862c13927b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765580445&rft_id=info:pmid/26773659&rfr_iscdi=true |