Loading…

The Synthesis and Evaluations of the 68Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography

Purpose. The aim of this study is to synthesize and evaluate 68Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET). Methods. Firstly, we performed the radio synthesis and microPET imaging of 68Ga(...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2016-01, Vol.2016 (2016), p.1-6
Main Authors: Li, Na, Du, Bulin, Yin, Yafu, Li, Xuena, Li, Yaming
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose. The aim of this study is to synthesize and evaluate 68Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET). Methods. Firstly, we performed the radio synthesis and microPET imaging of 68Ga(DOTA-LRB) in athymic nude mice bearing MDA-MB-231 and MCF-7 human breast cancer xenografts. Additionally, the evaluations of 18F-fluorodeoxyglucose (FDG), as a glucose metabolism radiotracer for imaging tumors in the same xenografts, have been conducted as a comparison. Results. The radiochemical purity of 68Ga(DOTA-LRB) was >95%. MicroPET dynamic imaging revealed that the uptake of 68Ga(DOTA-LRB) was mainly in normal organs, such as kidney, heart, liver, and brain and mainly excreted from kidney. The MDA-MB-231 and MCF-7 tumors were not clearly visible in PET images at 5, 15, 30, 40, 50, and 60 min after injection of 68Ga(DOTA-LRB). The tumor uptake values of 18F-FDG were 3.79±0.57 and 1.93±0.48%ID/g in MDA-MB-231 and MCF-7 tumor xenografts, respectively. Conclusions. 68Ga(DOTA-LRB) can be easily synthesized with high radiochemical purity and stability; however, it may be not an ideal PET radiotracer for imaging of MDR-positive tumors.
ISSN:2314-6133
2314-6141
DOI:10.1155/2016/8549635