Loading…

Comparison of 64Cu-Complexing Bifunctional Chelators for Radioimmunoconjugation: Labeling Efficiency, Specific Activity, and in Vitro/in Vivo Stability

High radiolabeling efficiency, preferably to high specific activity, and good stability of the radioimmunoconjugate are essential features for a successful immunoconjugate for imaging or therapy. In this study, the radiolabeling efficiency, in vitro stability, and biodistribution of immunoconjugates...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2012-05, Vol.23 (5), p.1029-1039
Main Authors: Cooper, Maggie S, Ma, Michelle T, Sunassee, Kavitha, Shaw, Karen P, Williams, Jennifer D, Paul, Rowena L, Donnelly, Paul S, Blower, Philip J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High radiolabeling efficiency, preferably to high specific activity, and good stability of the radioimmunoconjugate are essential features for a successful immunoconjugate for imaging or therapy. In this study, the radiolabeling efficiency, in vitro stability, and biodistribution of immunoconjugates with eight different bifunctional chelators labeled with 64Cu were compared. The anti-CD20 antibody, rituximab, was conjugated to four macrocyclic bifunctional chelators (p-SCN-Bn-DOTA, p-SCN-Bn-Oxo-DO3A, p-SCN-NOTA, and p-SCN-PCTA), three DTPA derivatives (p-SCN-Bn-DTPA, p-SCN-CHX-A″-DTPA, and ITC-2B3M-DTPA), and a macrobicyclic hexamine (sarcophagine) chelator (sar-CO2H) = (1-NH2-8-NHCO(CH2)3CO2H)sar where sar = sarcophagine = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane). Radiolabeling efficiency under various conditions, in vitro stability in serum at 37 °C, and in vivo biodistribution and imaging in normal mice over 48 h were studied. All chelators except sar-CO2H were conjugated to rituximab by thiourea bond formation with an average of 4.9 ± 0.9 chelators per antibody molecule. Sar-CO2H was conjugated to rituximab by amide bond formation with 0.5 chelators per antibody molecule. Efficiencies of 64Cu radiolabeling were dependent on the concentration of immunoconjugate. Notably, the 64Cu-NOTA-rituximab conjugate demonstrated the highest radiochemical yield (95%) under very dilute conditions (31 nM NOTA-rituximab conjugate). Similarly, sar-CO-rituximab, containing 1/10th the number of chelators per antibody compared to that of other conjugates, retained high labeling efficiency (98%) at an antibody concentration of 250 nM. In contrast to the radioimmunoconjugates containing DTPA derivatives, which demonstrated poor serum stability, all macrocyclic radioimmunoconjugates were very stable in serum with
ISSN:1043-1802
1520-4812
DOI:10.1021/bc300037w