Loading…

Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer

Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely emp...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-02, Vol.6 (1), p.21324-21324, Article 21324
Main Authors: Lee, Ja-Bin, An, Gwang-Guk, Yang, Seung-Mo, Park, Hae-Soo, Chung, Woo-Seong, Hong, Jin-Pyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c -axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep21324