Loading…

Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-02, Vol.6 (1), p.21562-21562, Article 21562
Main Authors: Liu, Tong, Cao, Xiao-Zhi, Su, Qi-Ping, Xiong, Shao-Jie, Yang, Chui-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943
cites cdi_FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943
container_end_page 21562
container_issue 1
container_start_page 21562
container_title Scientific reports
container_volume 6
creator Liu, Tong
Cao, Xiao-Zhi
Su, Qi-Ping
Xiong, Shao-Jie
Yang, Chui-Ping
description Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots and superconducting qubits.
doi_str_mv 10.1038/srep21562
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4761955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898963299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943</originalsourceid><addsrcrecordid>eNplkV1LwzAYhYMoOnQX_gEpeKNCNV9NmxtBhl8w8UavQ5qmNaNttiQd7N8b3RxTc5PA--S8h3MAOEXwGkFS3Hin5xhlDO-BEYY0SzHBeH_nfQTG3s9gPBnmFPFDcIRZwQuUsxF4fRnaYNIgXaNDuhhKE5KhV7Zf6j4Y28s2abTtdHBGJfMP6XXSyKAT0ycy6b7_Krk0YZX4lQ-6OwEHtWy9Hm_uY_D-cP82eUqnr4_Pk7tpqigpQqplVdMcYZgTVqNSQgppDRHhJFMFg5hWeUU1VqjMMS5qljFWQUgxKYsqR5ySY3C71p0PZacrFd062Yq5M510K2GlEb8nvfkQjV0KmjPEsywKXGwEnF0M2gfRGa9028pe28GLmE7OcAYhi-j5H3RmBxejiVTMkTOCOY_U5ZpSzvpYSr01g6D4akpsm4rs2a77LfnTSwSu1oCPo77RbmflP7VPZRmc4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898963299</pqid></control><display><type>article</type><title>Multi-target-qubit unconventional geometric phase gate in a multi-cavity system</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Tong ; Cao, Xiao-Zhi ; Su, Qi-Ping ; Xiong, Shao-Jie ; Yang, Chui-Ping</creator><creatorcontrib>Liu, Tong ; Cao, Xiao-Zhi ; Su, Qi-Ping ; Xiong, Shao-Jie ; Yang, Chui-Ping</creatorcontrib><description>Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots and superconducting qubits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21562</identifier><identifier>PMID: 26898176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/481 ; Cavities ; Humanities and Social Sciences ; Information processing ; multidisciplinary ; Quantum dots ; Quantum theory ; Science</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21562-21562, Article 21562</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943</citedby><cites>FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898963299/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898963299?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26898176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Cao, Xiao-Zhi</creatorcontrib><creatorcontrib>Su, Qi-Ping</creatorcontrib><creatorcontrib>Xiong, Shao-Jie</creatorcontrib><creatorcontrib>Yang, Chui-Ping</creatorcontrib><title>Multi-target-qubit unconventional geometric phase gate in a multi-cavity system</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots and superconducting qubits.</description><subject>639/766/483/1139</subject><subject>639/766/483/481</subject><subject>Cavities</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>multidisciplinary</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LwzAYhYMoOnQX_gEpeKNCNV9NmxtBhl8w8UavQ5qmNaNttiQd7N8b3RxTc5PA--S8h3MAOEXwGkFS3Hin5xhlDO-BEYY0SzHBeH_nfQTG3s9gPBnmFPFDcIRZwQuUsxF4fRnaYNIgXaNDuhhKE5KhV7Zf6j4Y28s2abTtdHBGJfMP6XXSyKAT0ycy6b7_Krk0YZX4lQ-6OwEHtWy9Hm_uY_D-cP82eUqnr4_Pk7tpqigpQqplVdMcYZgTVqNSQgppDRHhJFMFg5hWeUU1VqjMMS5qljFWQUgxKYsqR5ySY3C71p0PZacrFd062Yq5M510K2GlEb8nvfkQjV0KmjPEsywKXGwEnF0M2gfRGa9028pe28GLmE7OcAYhi-j5H3RmBxejiVTMkTOCOY_U5ZpSzvpYSr01g6D4akpsm4rs2a77LfnTSwSu1oCPo77RbmflP7VPZRmc4Q</recordid><startdate>20160222</startdate><enddate>20160222</enddate><creator>Liu, Tong</creator><creator>Cao, Xiao-Zhi</creator><creator>Su, Qi-Ping</creator><creator>Xiong, Shao-Jie</creator><creator>Yang, Chui-Ping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160222</creationdate><title>Multi-target-qubit unconventional geometric phase gate in a multi-cavity system</title><author>Liu, Tong ; Cao, Xiao-Zhi ; Su, Qi-Ping ; Xiong, Shao-Jie ; Yang, Chui-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/481</topic><topic>Cavities</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>multidisciplinary</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Cao, Xiao-Zhi</creatorcontrib><creatorcontrib>Su, Qi-Ping</creatorcontrib><creatorcontrib>Xiong, Shao-Jie</creatorcontrib><creatorcontrib>Yang, Chui-Ping</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tong</au><au>Cao, Xiao-Zhi</au><au>Su, Qi-Ping</au><au>Xiong, Shao-Jie</au><au>Yang, Chui-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-target-qubit unconventional geometric phase gate in a multi-cavity system</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-22</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21562</spage><epage>21562</epage><pages>21562-21562</pages><artnum>21562</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots and superconducting qubits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26898176</pmid><doi>10.1038/srep21562</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.21562-21562, Article 21562
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4761955
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/483/1139
639/766/483/481
Cavities
Humanities and Social Sciences
Information processing
multidisciplinary
Quantum dots
Quantum theory
Science
title Multi-target-qubit unconventional geometric phase gate in a multi-cavity system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-target-qubit%20unconventional%20geometric%20phase%20gate%20in%20a%20multi-cavity%20system&rft.jtitle=Scientific%20reports&rft.au=Liu,%20Tong&rft.date=2016-02-22&rft.volume=6&rft.issue=1&rft.spage=21562&rft.epage=21562&rft.pages=21562-21562&rft.artnum=21562&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21562&rft_dat=%3Cproquest_pubme%3E1898963299%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-eadf47120736f1ba0404f013935c86024d7d4e2c1b7228f6566d00423b8d71943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898963299&rft_id=info:pmid/26898176&rfr_iscdi=true