Loading…
Gemcitabine triggers angiogenesis-promoting molecular signals in pancreatic cancer cells: Therapeutic implications
Pancreatic tumor microenvironment (TME) is characterized by poor tumor-vasculature and extensive desmoplasia that together contribute to poor response to chemotherapy. It was recently shown that targeting of TME to inhibit desmoplasiatic reaction in a preclinical model resulted in increased microves...
Saved in:
Published in: | Oncotarget 2015-11, Vol.6 (36), p.39140-39150 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pancreatic tumor microenvironment (TME) is characterized by poor tumor-vasculature and extensive desmoplasia that together contribute to poor response to chemotherapy. It was recently shown that targeting of TME to inhibit desmoplasiatic reaction in a preclinical model resulted in increased microvessel-density and intratumoral drug concentration, leading to improved therapeutic response. This approach, however, failed to generate a favorable response in clinical trial. In that regard, we have previously demonstrated a role of gemcitabine-induced CXCR4 signaling as a counter-defense mechanism, which also promoted invasiveness of pancreatic cancer (PC) cells. Here, we investigated the effect of gemcitabine on endothelial cell phenotype. Gemcitabine-treatment of human-umbilical-vein-endothelial-cells (HUVECs) did not promote the growth of HUVECs; however, it was induced when treated with conditioned media from gemcitabine-treated (Gem-CM) PC cells due to increased cell-cycle progression and apoptotic-resistance. Moreover, treatment of HUVECs with Gem-CM resulted in capillary-like structure (CLS) formation and promoted their ability to migrate and invade through extracellular-matrix. Gemcitabine-treatment of PC cells induced expression of various growth factors/cytokines, including IL-8, which exhibited greatest upregulation. Further, IL-8 depletion in Gem-CM diminished its potency to promote angiogenic phenotypes. Together, these findings suggest an indirect effect of gemcitabine on angiogenesis, which, in light of our previous observations, may hold important clinical significance. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.3784 |