Loading…
Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then pr...
Saved in:
Published in: | Science advances 2016-02, Vol.2 (2), p.e1500802-e1500802 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663 |
container_end_page | e1500802 |
container_issue | 2 |
container_start_page | e1500802 |
container_title | Science advances |
container_volume | 2 |
creator | Sakamaki, Tatsuya Ohtani, Eiji Fukui, Hiroshi Kamada, Seiji Takahashi, Suguru Sakairi, Takanori Takahata, Akihiro Sakai, Takeshi Tsutsui, Satoshi Ishikawa, Daisuke Shiraishi, Rei Seto, Yusuke Tsuchiya, Taku Baron, Alfred Q R |
description | Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect. |
doi_str_mv | 10.1126/sciadv.1500802 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770219345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</originalsourceid><addsrcrecordid>eNpVkb1rHDEQxYVJsI3j1mVQlzR70ddKuiYQDicxGNIktdBJI5_CrnSRtEfc-U_P3keM3YwGzXu_GXgI3VCyoJTJT9VF63cL2hOiCTtDl4yrvmO90G9e9BfoutbfhBAqpOzp8hxdMLnkXCp9iZ5WOdVWbEyt4pzwrS1t86HimBIU7HKBuYzbXGOL8zimAKWAx6HkEY9g61RghIM54LYBXPOUPN7BkF1sj_vfjdt2sRzMGP62vX5mJn8g1nfobbBDhevTe4V-fb39ufre3f_4drf6ct85rmXrJLPc2bV0Ye1AScWABuL6tVNCkyCDIJ5QD1pL4YXnXktGg9WMOU2DkpJfoc9H7nZaj-DdfHOxg9mWONryaLKN5vUkxY15yDsjlKJCkBnw8QQo-c8EtZkxVgfDYBPkqRqqFGF0yUU_SxdHqSu51gLheQ0lZp-cOSZnTsnNhvcvj3uW_8-J_wOa5pm4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770219345</pqid></control><display><type>article</type><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</creator><creatorcontrib>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</creatorcontrib><description>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500802</identifier><identifier>PMID: 26933678</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Geophysics ; SciAdv r-articles</subject><ispartof>Science advances, 2016-02, Vol.2 (2), p.e1500802-e1500802</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</citedby><cites>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</cites><orcidid>0000-0002-6042-3692 ; 0000-0002-7880-635X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26933678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamaki, Tatsuya</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Fukui, Hiroshi</creatorcontrib><creatorcontrib>Kamada, Seiji</creatorcontrib><creatorcontrib>Takahashi, Suguru</creatorcontrib><creatorcontrib>Sakairi, Takanori</creatorcontrib><creatorcontrib>Takahata, Akihiro</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Tsutsui, Satoshi</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Shiraishi, Rei</creatorcontrib><creatorcontrib>Seto, Yusuke</creatorcontrib><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Baron, Alfred Q R</creatorcontrib><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</description><subject>Geophysics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkb1rHDEQxYVJsI3j1mVQlzR70ddKuiYQDicxGNIktdBJI5_CrnSRtEfc-U_P3keM3YwGzXu_GXgI3VCyoJTJT9VF63cL2hOiCTtDl4yrvmO90G9e9BfoutbfhBAqpOzp8hxdMLnkXCp9iZ5WOdVWbEyt4pzwrS1t86HimBIU7HKBuYzbXGOL8zimAKWAx6HkEY9g61RghIM54LYBXPOUPN7BkF1sj_vfjdt2sRzMGP62vX5mJn8g1nfobbBDhevTe4V-fb39ufre3f_4drf6ct85rmXrJLPc2bV0Ye1AScWABuL6tVNCkyCDIJ5QD1pL4YXnXktGg9WMOU2DkpJfoc9H7nZaj-DdfHOxg9mWONryaLKN5vUkxY15yDsjlKJCkBnw8QQo-c8EtZkxVgfDYBPkqRqqFGF0yUU_SxdHqSu51gLheQ0lZp-cOSZnTsnNhvcvj3uW_8-J_wOa5pm4</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Sakamaki, Tatsuya</creator><creator>Ohtani, Eiji</creator><creator>Fukui, Hiroshi</creator><creator>Kamada, Seiji</creator><creator>Takahashi, Suguru</creator><creator>Sakairi, Takanori</creator><creator>Takahata, Akihiro</creator><creator>Sakai, Takeshi</creator><creator>Tsutsui, Satoshi</creator><creator>Ishikawa, Daisuke</creator><creator>Shiraishi, Rei</creator><creator>Seto, Yusuke</creator><creator>Tsuchiya, Taku</creator><creator>Baron, Alfred Q R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6042-3692</orcidid><orcidid>https://orcid.org/0000-0002-7880-635X</orcidid></search><sort><creationdate>20160201</creationdate><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><author>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Geophysics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamaki, Tatsuya</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Fukui, Hiroshi</creatorcontrib><creatorcontrib>Kamada, Seiji</creatorcontrib><creatorcontrib>Takahashi, Suguru</creatorcontrib><creatorcontrib>Sakairi, Takanori</creatorcontrib><creatorcontrib>Takahata, Akihiro</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Tsutsui, Satoshi</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Shiraishi, Rei</creatorcontrib><creatorcontrib>Seto, Yusuke</creatorcontrib><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Baron, Alfred Q R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamaki, Tatsuya</au><au>Ohtani, Eiji</au><au>Fukui, Hiroshi</au><au>Kamada, Seiji</au><au>Takahashi, Suguru</au><au>Sakairi, Takanori</au><au>Takahata, Akihiro</au><au>Sakai, Takeshi</au><au>Tsutsui, Satoshi</au><au>Ishikawa, Daisuke</au><au>Shiraishi, Rei</au><au>Seto, Yusuke</au><au>Tsuchiya, Taku</au><au>Baron, Alfred Q R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>2</volume><issue>2</issue><spage>e1500802</spage><epage>e1500802</epage><pages>e1500802-e1500802</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26933678</pmid><doi>10.1126/sciadv.1500802</doi><orcidid>https://orcid.org/0000-0002-6042-3692</orcidid><orcidid>https://orcid.org/0000-0002-7880-635X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2016-02, Vol.2 (2), p.e1500802-e1500802 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771440 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Geophysics SciAdv r-articles |
title | Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20Earth's%20inner%20core%20composition%20inferred%20from%20measurements%20of%20the%20sound%20velocity%20of%20hcp-iron%20in%20extreme%20conditions&rft.jtitle=Science%20advances&rft.au=Sakamaki,%20Tatsuya&rft.date=2016-02-01&rft.volume=2&rft.issue=2&rft.spage=e1500802&rft.epage=e1500802&rft.pages=e1500802-e1500802&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500802&rft_dat=%3Cproquest_pubme%3E1770219345%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770219345&rft_id=info:pmid/26933678&rfr_iscdi=true |