Loading…

Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions

Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then pr...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2016-02, Vol.2 (2), p.e1500802-e1500802
Main Authors: Sakamaki, Tatsuya, Ohtani, Eiji, Fukui, Hiroshi, Kamada, Seiji, Takahashi, Suguru, Sakairi, Takanori, Takahata, Akihiro, Sakai, Takeshi, Tsutsui, Satoshi, Ishikawa, Daisuke, Shiraishi, Rei, Seto, Yusuke, Tsuchiya, Taku, Baron, Alfred Q R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663
cites cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663
container_end_page e1500802
container_issue 2
container_start_page e1500802
container_title Science advances
container_volume 2
creator Sakamaki, Tatsuya
Ohtani, Eiji
Fukui, Hiroshi
Kamada, Seiji
Takahashi, Suguru
Sakairi, Takanori
Takahata, Akihiro
Sakai, Takeshi
Tsutsui, Satoshi
Ishikawa, Daisuke
Shiraishi, Rei
Seto, Yusuke
Tsuchiya, Taku
Baron, Alfred Q R
description Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.
doi_str_mv 10.1126/sciadv.1500802
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770219345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</originalsourceid><addsrcrecordid>eNpVkb1rHDEQxYVJsI3j1mVQlzR70ddKuiYQDicxGNIktdBJI5_CrnSRtEfc-U_P3keM3YwGzXu_GXgI3VCyoJTJT9VF63cL2hOiCTtDl4yrvmO90G9e9BfoutbfhBAqpOzp8hxdMLnkXCp9iZ5WOdVWbEyt4pzwrS1t86HimBIU7HKBuYzbXGOL8zimAKWAx6HkEY9g61RghIM54LYBXPOUPN7BkF1sj_vfjdt2sRzMGP62vX5mJn8g1nfobbBDhevTe4V-fb39ufre3f_4drf6ct85rmXrJLPc2bV0Ye1AScWABuL6tVNCkyCDIJ5QD1pL4YXnXktGg9WMOU2DkpJfoc9H7nZaj-DdfHOxg9mWONryaLKN5vUkxY15yDsjlKJCkBnw8QQo-c8EtZkxVgfDYBPkqRqqFGF0yUU_SxdHqSu51gLheQ0lZp-cOSZnTsnNhvcvj3uW_8-J_wOa5pm4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770219345</pqid></control><display><type>article</type><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</creator><creatorcontrib>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</creatorcontrib><description>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500802</identifier><identifier>PMID: 26933678</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Geophysics ; SciAdv r-articles</subject><ispartof>Science advances, 2016-02, Vol.2 (2), p.e1500802-e1500802</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</citedby><cites>FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</cites><orcidid>0000-0002-6042-3692 ; 0000-0002-7880-635X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26933678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamaki, Tatsuya</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Fukui, Hiroshi</creatorcontrib><creatorcontrib>Kamada, Seiji</creatorcontrib><creatorcontrib>Takahashi, Suguru</creatorcontrib><creatorcontrib>Sakairi, Takanori</creatorcontrib><creatorcontrib>Takahata, Akihiro</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Tsutsui, Satoshi</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Shiraishi, Rei</creatorcontrib><creatorcontrib>Seto, Yusuke</creatorcontrib><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Baron, Alfred Q R</creatorcontrib><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</description><subject>Geophysics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkb1rHDEQxYVJsI3j1mVQlzR70ddKuiYQDicxGNIktdBJI5_CrnSRtEfc-U_P3keM3YwGzXu_GXgI3VCyoJTJT9VF63cL2hOiCTtDl4yrvmO90G9e9BfoutbfhBAqpOzp8hxdMLnkXCp9iZ5WOdVWbEyt4pzwrS1t86HimBIU7HKBuYzbXGOL8zimAKWAx6HkEY9g61RghIM54LYBXPOUPN7BkF1sj_vfjdt2sRzMGP62vX5mJn8g1nfobbBDhevTe4V-fb39ufre3f_4drf6ct85rmXrJLPc2bV0Ye1AScWABuL6tVNCkyCDIJ5QD1pL4YXnXktGg9WMOU2DkpJfoc9H7nZaj-DdfHOxg9mWONryaLKN5vUkxY15yDsjlKJCkBnw8QQo-c8EtZkxVgfDYBPkqRqqFGF0yUU_SxdHqSu51gLheQ0lZp-cOSZnTsnNhvcvj3uW_8-J_wOa5pm4</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Sakamaki, Tatsuya</creator><creator>Ohtani, Eiji</creator><creator>Fukui, Hiroshi</creator><creator>Kamada, Seiji</creator><creator>Takahashi, Suguru</creator><creator>Sakairi, Takanori</creator><creator>Takahata, Akihiro</creator><creator>Sakai, Takeshi</creator><creator>Tsutsui, Satoshi</creator><creator>Ishikawa, Daisuke</creator><creator>Shiraishi, Rei</creator><creator>Seto, Yusuke</creator><creator>Tsuchiya, Taku</creator><creator>Baron, Alfred Q R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6042-3692</orcidid><orcidid>https://orcid.org/0000-0002-7880-635X</orcidid></search><sort><creationdate>20160201</creationdate><title>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</title><author>Sakamaki, Tatsuya ; Ohtani, Eiji ; Fukui, Hiroshi ; Kamada, Seiji ; Takahashi, Suguru ; Sakairi, Takanori ; Takahata, Akihiro ; Sakai, Takeshi ; Tsutsui, Satoshi ; Ishikawa, Daisuke ; Shiraishi, Rei ; Seto, Yusuke ; Tsuchiya, Taku ; Baron, Alfred Q R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Geophysics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamaki, Tatsuya</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Fukui, Hiroshi</creatorcontrib><creatorcontrib>Kamada, Seiji</creatorcontrib><creatorcontrib>Takahashi, Suguru</creatorcontrib><creatorcontrib>Sakairi, Takanori</creatorcontrib><creatorcontrib>Takahata, Akihiro</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Tsutsui, Satoshi</creatorcontrib><creatorcontrib>Ishikawa, Daisuke</creatorcontrib><creatorcontrib>Shiraishi, Rei</creatorcontrib><creatorcontrib>Seto, Yusuke</creatorcontrib><creatorcontrib>Tsuchiya, Taku</creatorcontrib><creatorcontrib>Baron, Alfred Q R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamaki, Tatsuya</au><au>Ohtani, Eiji</au><au>Fukui, Hiroshi</au><au>Kamada, Seiji</au><au>Takahashi, Suguru</au><au>Sakairi, Takanori</au><au>Takahata, Akihiro</au><au>Sakai, Takeshi</au><au>Tsutsui, Satoshi</au><au>Ishikawa, Daisuke</au><au>Shiraishi, Rei</au><au>Seto, Yusuke</au><au>Tsuchiya, Taku</au><au>Baron, Alfred Q R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>2</volume><issue>2</issue><spage>e1500802</spage><epage>e1500802</epage><pages>e1500802-e1500802</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26933678</pmid><doi>10.1126/sciadv.1500802</doi><orcidid>https://orcid.org/0000-0002-6042-3692</orcidid><orcidid>https://orcid.org/0000-0002-7880-635X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-02, Vol.2 (2), p.e1500802-e1500802
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771440
source American Association for the Advancement of Science; PubMed Central
subjects Geophysics
SciAdv r-articles
title Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20Earth's%20inner%20core%20composition%20inferred%20from%20measurements%20of%20the%20sound%20velocity%20of%20hcp-iron%20in%20extreme%20conditions&rft.jtitle=Science%20advances&rft.au=Sakamaki,%20Tatsuya&rft.date=2016-02-01&rft.volume=2&rft.issue=2&rft.spage=e1500802&rft.epage=e1500802&rft.pages=e1500802-e1500802&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500802&rft_dat=%3Cproquest_pubme%3E1770219345%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-62a3cab6cfbce7672e1f0c5bc7480f6f40d01de8864d4d3d8621fa822c81f7663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770219345&rft_id=info:pmid/26933678&rfr_iscdi=true