Loading…

Dynamically variable negative stiffness structures

Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structur...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2016-02, Vol.2 (2), p.e1500778-e1500778
Main Authors: Churchill, Christopher B, Shahan, David W, Smith, Sloan P, Keefe, Andrew C, McKnight, Geoffrey P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663
cites cdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663
container_end_page e1500778
container_issue 2
container_start_page e1500778
container_title Science advances
container_volume 2
creator Churchill, Christopher B
Shahan, David W
Smith, Sloan P
Keefe, Andrew C
McKnight, Geoffrey P
description Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (
doi_str_mv 10.1126/sciadv.1500778
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774531937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774531937</pqid></control><display><type>article</type><title>Dynamically variable negative stiffness structures</title><source>PubMed Central database</source><source>Science Online科学在线</source><creator>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creator><creatorcontrib>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creatorcontrib><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500778</identifier><identifier>PMID: 26989771</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Bioengineering - instrumentation ; Bioengineering - statistics &amp; numerical data ; Biomechanical Phenomena ; Humans ; Materials Engineering ; Robotics ; SciAdv r-articles ; Vibration ; Weight-Bearing</subject><ispartof>Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</citedby><cites>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</cites><orcidid>0000-0002-2976-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26989771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><title>Dynamically variable negative stiffness structures</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><subject>Animals</subject><subject>Bioengineering - instrumentation</subject><subject>Bioengineering - statistics &amp; numerical data</subject><subject>Biomechanical Phenomena</subject><subject>Humans</subject><subject>Materials Engineering</subject><subject>Robotics</subject><subject>SciAdv r-articles</subject><subject>Vibration</subject><subject>Weight-Bearing</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Churchill, Christopher B</creator><creator>Shahan, David W</creator><creator>Smith, Sloan P</creator><creator>Keefe, Andrew C</creator><creator>McKnight, Geoffrey P</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid></search><sort><creationdate>20160201</creationdate><title>Dynamically variable negative stiffness structures</title><author>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bioengineering - instrumentation</topic><topic>Bioengineering - statistics &amp; numerical data</topic><topic>Biomechanical Phenomena</topic><topic>Humans</topic><topic>Materials Engineering</topic><topic>Robotics</topic><topic>SciAdv r-articles</topic><topic>Vibration</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Churchill, Christopher B</au><au>Shahan, David W</au><au>Smith, Sloan P</au><au>Keefe, Andrew C</au><au>McKnight, Geoffrey P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically variable negative stiffness structures</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>2</volume><issue>2</issue><spage>e1500778</spage><epage>e1500778</epage><pages>e1500778-e1500778</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26989771</pmid><doi>10.1126/sciadv.1500778</doi><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489
source PubMed Central database; Science Online科学在线
subjects Animals
Bioengineering - instrumentation
Bioengineering - statistics & numerical data
Biomechanical Phenomena
Humans
Materials Engineering
Robotics
SciAdv r-articles
Vibration
Weight-Bearing
title Dynamically variable negative stiffness structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20variable%20negative%20stiffness%20structures&rft.jtitle=Science%20advances&rft.au=Churchill,%20Christopher%20B&rft.date=2016-02-01&rft.volume=2&rft.issue=2&rft.spage=e1500778&rft.epage=e1500778&rft.pages=e1500778-e1500778&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500778&rft_dat=%3Cproquest_pubme%3E1774531937%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1774531937&rft_id=info:pmid/26989771&rfr_iscdi=true