Loading…

Gene expression profiling gut microbiota in different races of humans

The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, su...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-03, Vol.6 (1), p.23075-23075, Article 23075
Main Authors: Chen, Lei, Zhang, Yu-Hang, Huang, Tao, Cai, Yu-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323
cites cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323
container_end_page 23075
container_issue 1
container_start_page 23075
container_title Scientific reports
container_volume 6
creator Chen, Lei
Zhang, Yu-Hang
Huang, Tao
Cai, Yu-Dong
description The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.
doi_str_mv 10.1038/srep23075
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773806741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</originalsourceid><addsrcrecordid>eNplkU9LxDAQxYMoKroHv4AEvKiwmj9Nk14EEV0FwYueQ7adrJE2qUkr-u2NrC6r5jKB-fHmzTyEDig5o4Sr8xShZ5xIsYF2GSnElHHGNtf-O2iS0gvJT7CqoNU22mFlJUXJyC66noEHDO99hJRc8LiPwbrW-QVejAPuXB3D3IXBYOdx46yFCH7A0dSQcLD4eeyMT_toy5o2weS77qGnm-vHq9vp_cPs7uryfloLUgxTsKWBGkAqS2pWKCuFUQyImpecCVtVAijlUhJGiW1Yw4SgiitZNlQUeRW-hy6Wuv0476Cps5VoWt1H15n4oYNx-nfHu2e9CG-6kBUtVZEFjr8FYngdIQ26c6mGtjUewpg0lZIrUsqCZvToD_oSxujzepqqSkkmJOeZOllS-U4pR2FXZijRX_noVT6ZPVx3vyJ_0sjA6RJIueUXENdG_lP7BCUGmP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898725733</pqid></control><display><type>article</type><title>Gene expression profiling gut microbiota in different races of humans</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</creator><creatorcontrib>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</creatorcontrib><description>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23075</identifier><identifier>PMID: 26975620</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 631/208/199 ; 639/705/1042 ; Algorithms ; Asian Continental Ancestry Group ; China ; Cluster Analysis ; Digestive system ; Eating behavior ; Europe ; European Continental Ancestry Group ; Feeding Behavior - ethnology ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Gene expression ; Gene Expression Profiling - methods ; Humanities and Social Sciences ; Humans ; Intestinal microflora ; Intestine ; Learning algorithms ; Machine Learning ; Metagenome - genetics ; Metagenomics - methods ; Microorganisms ; multidisciplinary ; Oligonucleotide Array Sequence Analysis - methods ; Races ; Science ; United States</subject><ispartof>Scientific reports, 2016-03, Vol.6 (1), p.23075-23075, Article 23075</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</citedby><cites>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898725733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898725733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26975620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Hang</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Cai, Yu-Dong</creatorcontrib><title>Gene expression profiling gut microbiota in different races of humans</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</description><subject>45/43</subject><subject>631/208/199</subject><subject>639/705/1042</subject><subject>Algorithms</subject><subject>Asian Continental Ancestry Group</subject><subject>China</subject><subject>Cluster Analysis</subject><subject>Digestive system</subject><subject>Eating behavior</subject><subject>Europe</subject><subject>European Continental Ancestry Group</subject><subject>Feeding Behavior - ethnology</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Metagenome - genetics</subject><subject>Metagenomics - methods</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Races</subject><subject>Science</subject><subject>United States</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkU9LxDAQxYMoKroHv4AEvKiwmj9Nk14EEV0FwYueQ7adrJE2qUkr-u2NrC6r5jKB-fHmzTyEDig5o4Sr8xShZ5xIsYF2GSnElHHGNtf-O2iS0gvJT7CqoNU22mFlJUXJyC66noEHDO99hJRc8LiPwbrW-QVejAPuXB3D3IXBYOdx46yFCH7A0dSQcLD4eeyMT_toy5o2weS77qGnm-vHq9vp_cPs7uryfloLUgxTsKWBGkAqS2pWKCuFUQyImpecCVtVAijlUhJGiW1Yw4SgiitZNlQUeRW-hy6Wuv0476Cps5VoWt1H15n4oYNx-nfHu2e9CG-6kBUtVZEFjr8FYngdIQ26c6mGtjUewpg0lZIrUsqCZvToD_oSxujzepqqSkkmJOeZOllS-U4pR2FXZijRX_noVT6ZPVx3vyJ_0sjA6RJIueUXENdG_lP7BCUGmP4</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Chen, Lei</creator><creator>Zhang, Yu-Hang</creator><creator>Huang, Tao</creator><creator>Cai, Yu-Dong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160315</creationdate><title>Gene expression profiling gut microbiota in different races of humans</title><author>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>631/208/199</topic><topic>639/705/1042</topic><topic>Algorithms</topic><topic>Asian Continental Ancestry Group</topic><topic>China</topic><topic>Cluster Analysis</topic><topic>Digestive system</topic><topic>Eating behavior</topic><topic>Europe</topic><topic>European Continental Ancestry Group</topic><topic>Feeding Behavior - ethnology</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Metagenome - genetics</topic><topic>Metagenomics - methods</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Races</topic><topic>Science</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Hang</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Cai, Yu-Dong</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Zhang, Yu-Hang</au><au>Huang, Tao</au><au>Cai, Yu-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling gut microbiota in different races of humans</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23075</spage><epage>23075</epage><pages>23075-23075</pages><artnum>23075</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26975620</pmid><doi>10.1038/srep23075</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-03, Vol.6 (1), p.23075-23075, Article 23075
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791684
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 45/43
631/208/199
639/705/1042
Algorithms
Asian Continental Ancestry Group
China
Cluster Analysis
Digestive system
Eating behavior
Europe
European Continental Ancestry Group
Feeding Behavior - ethnology
Gastrointestinal Microbiome - genetics
Gastrointestinal tract
Gene expression
Gene Expression Profiling - methods
Humanities and Social Sciences
Humans
Intestinal microflora
Intestine
Learning algorithms
Machine Learning
Metagenome - genetics
Metagenomics - methods
Microorganisms
multidisciplinary
Oligonucleotide Array Sequence Analysis - methods
Races
Science
United States
title Gene expression profiling gut microbiota in different races of humans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20gut%20microbiota%20in%20different%20races%20of%20humans&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Lei&rft.date=2016-03-15&rft.volume=6&rft.issue=1&rft.spage=23075&rft.epage=23075&rft.pages=23075-23075&rft.artnum=23075&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23075&rft_dat=%3Cproquest_pubme%3E1773806741%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898725733&rft_id=info:pmid/26975620&rfr_iscdi=true