Loading…
Gene expression profiling gut microbiota in different races of humans
The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, su...
Saved in:
Published in: | Scientific reports 2016-03, Vol.6 (1), p.23075-23075, Article 23075 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323 |
container_end_page | 23075 |
container_issue | 1 |
container_start_page | 23075 |
container_title | Scientific reports |
container_volume | 6 |
creator | Chen, Lei Zhang, Yu-Hang Huang, Tao Cai, Yu-Dong |
description | The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome. |
doi_str_mv | 10.1038/srep23075 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773806741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</originalsourceid><addsrcrecordid>eNplkU9LxDAQxYMoKroHv4AEvKiwmj9Nk14EEV0FwYueQ7adrJE2qUkr-u2NrC6r5jKB-fHmzTyEDig5o4Sr8xShZ5xIsYF2GSnElHHGNtf-O2iS0gvJT7CqoNU22mFlJUXJyC66noEHDO99hJRc8LiPwbrW-QVejAPuXB3D3IXBYOdx46yFCH7A0dSQcLD4eeyMT_toy5o2weS77qGnm-vHq9vp_cPs7uryfloLUgxTsKWBGkAqS2pWKCuFUQyImpecCVtVAijlUhJGiW1Yw4SgiitZNlQUeRW-hy6Wuv0476Cps5VoWt1H15n4oYNx-nfHu2e9CG-6kBUtVZEFjr8FYngdIQ26c6mGtjUewpg0lZIrUsqCZvToD_oSxujzepqqSkkmJOeZOllS-U4pR2FXZijRX_noVT6ZPVx3vyJ_0sjA6RJIueUXENdG_lP7BCUGmP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898725733</pqid></control><display><type>article</type><title>Gene expression profiling gut microbiota in different races of humans</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</creator><creatorcontrib>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</creatorcontrib><description>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23075</identifier><identifier>PMID: 26975620</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 631/208/199 ; 639/705/1042 ; Algorithms ; Asian Continental Ancestry Group ; China ; Cluster Analysis ; Digestive system ; Eating behavior ; Europe ; European Continental Ancestry Group ; Feeding Behavior - ethnology ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Gene expression ; Gene Expression Profiling - methods ; Humanities and Social Sciences ; Humans ; Intestinal microflora ; Intestine ; Learning algorithms ; Machine Learning ; Metagenome - genetics ; Metagenomics - methods ; Microorganisms ; multidisciplinary ; Oligonucleotide Array Sequence Analysis - methods ; Races ; Science ; United States</subject><ispartof>Scientific reports, 2016-03, Vol.6 (1), p.23075-23075, Article 23075</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</citedby><cites>FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898725733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898725733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26975620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Hang</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Cai, Yu-Dong</creatorcontrib><title>Gene expression profiling gut microbiota in different races of humans</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</description><subject>45/43</subject><subject>631/208/199</subject><subject>639/705/1042</subject><subject>Algorithms</subject><subject>Asian Continental Ancestry Group</subject><subject>China</subject><subject>Cluster Analysis</subject><subject>Digestive system</subject><subject>Eating behavior</subject><subject>Europe</subject><subject>European Continental Ancestry Group</subject><subject>Feeding Behavior - ethnology</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Metagenome - genetics</subject><subject>Metagenomics - methods</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Races</subject><subject>Science</subject><subject>United States</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkU9LxDAQxYMoKroHv4AEvKiwmj9Nk14EEV0FwYueQ7adrJE2qUkr-u2NrC6r5jKB-fHmzTyEDig5o4Sr8xShZ5xIsYF2GSnElHHGNtf-O2iS0gvJT7CqoNU22mFlJUXJyC66noEHDO99hJRc8LiPwbrW-QVejAPuXB3D3IXBYOdx46yFCH7A0dSQcLD4eeyMT_toy5o2weS77qGnm-vHq9vp_cPs7uryfloLUgxTsKWBGkAqS2pWKCuFUQyImpecCVtVAijlUhJGiW1Yw4SgiitZNlQUeRW-hy6Wuv0476Cps5VoWt1H15n4oYNx-nfHu2e9CG-6kBUtVZEFjr8FYngdIQ26c6mGtjUewpg0lZIrUsqCZvToD_oSxujzepqqSkkmJOeZOllS-U4pR2FXZijRX_noVT6ZPVx3vyJ_0sjA6RJIueUXENdG_lP7BCUGmP4</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Chen, Lei</creator><creator>Zhang, Yu-Hang</creator><creator>Huang, Tao</creator><creator>Cai, Yu-Dong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160315</creationdate><title>Gene expression profiling gut microbiota in different races of humans</title><author>Chen, Lei ; Zhang, Yu-Hang ; Huang, Tao ; Cai, Yu-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>631/208/199</topic><topic>639/705/1042</topic><topic>Algorithms</topic><topic>Asian Continental Ancestry Group</topic><topic>China</topic><topic>Cluster Analysis</topic><topic>Digestive system</topic><topic>Eating behavior</topic><topic>Europe</topic><topic>European Continental Ancestry Group</topic><topic>Feeding Behavior - ethnology</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Metagenome - genetics</topic><topic>Metagenomics - methods</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Races</topic><topic>Science</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Hang</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Cai, Yu-Dong</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Zhang, Yu-Hang</au><au>Huang, Tao</au><au>Cai, Yu-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling gut microbiota in different races of humans</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23075</spage><epage>23075</epage><pages>23075-23075</pages><artnum>23075</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26975620</pmid><doi>10.1038/srep23075</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-03, Vol.6 (1), p.23075-23075, Article 23075 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791684 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45/43 631/208/199 639/705/1042 Algorithms Asian Continental Ancestry Group China Cluster Analysis Digestive system Eating behavior Europe European Continental Ancestry Group Feeding Behavior - ethnology Gastrointestinal Microbiome - genetics Gastrointestinal tract Gene expression Gene Expression Profiling - methods Humanities and Social Sciences Humans Intestinal microflora Intestine Learning algorithms Machine Learning Metagenome - genetics Metagenomics - methods Microorganisms multidisciplinary Oligonucleotide Array Sequence Analysis - methods Races Science United States |
title | Gene expression profiling gut microbiota in different races of humans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20gut%20microbiota%20in%20different%20races%20of%20humans&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Lei&rft.date=2016-03-15&rft.volume=6&rft.issue=1&rft.spage=23075&rft.epage=23075&rft.pages=23075-23075&rft.artnum=23075&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23075&rft_dat=%3Cproquest_pubme%3E1773806741%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-ef6aecee78f0c248f75a82e08b6325f995e113770210fd2d255183876d1542323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898725733&rft_id=info:pmid/26975620&rfr_iscdi=true |