Loading…
Development of new fusion proteins for visualizing amyloid-β oligomers in vivo
The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has bee...
Saved in:
Published in: | Scientific reports 2016-03, Vol.6 (1), p.22712, Article 22712 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243 |
container_end_page | |
container_issue | 1 |
container_start_page | 22712 |
container_title | Scientific reports |
container_volume | 6 |
creator | Ochiishi, Tomoyo Doi, Motomichi Yamasaki, Kazuhiko Hirose, Keiko Kitamura, Akira Urabe, Takao Hattori, Nobutaka Kinjo, Masataka Ebihara, Tatsuhiko Shimura, Hideki |
description | The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers
in vivo
is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ
1-42
-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers
in vitro
and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker” and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic
C. elegans
. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals and for drug screening by analyzing Aβ toxicity. |
doi_str_mv | 10.1038/srep22712 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4793674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26982553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243</originalsourceid><addsrcrecordid>eNptkN1KwzAYQIMobsxd-AKSW4Vq-jVt0xtB5i8Iu9HrkGZpzWiTkqyV-Vg-iM9kxnRMMDcJfCcn4SB0GpPLmCTsyjvVAeQxHKAxEJpGkAAc7p1HaOr9koSVQkHj4hiNICsYpGkyRvNbNajGdq0yK2wrbNQ7rnqvrcGdsyuljceVdXjQvheN_tCmxqJdN1Yvoq9PbBtd21Y5j7UJzGBP0FElGq-mP_sEvd7fvcweo-f5w9Ps5jmSNCariKVFnpA0K0tFFDAJscgyVoEkVDJaplUpQORFSsosU5AXScESluc0kbIEAjSZoOutt-vLVi1k-L4TDe-cboVbcys0_zsx-o3XduA0yLJ8IzjfCqSzPjSsdndjwjdh-S5sYM_2H9uRvxkDcLEFfBiZWjm-tL0zIcA_tm96rYRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of new fusion proteins for visualizing amyloid-β oligomers in vivo</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ochiishi, Tomoyo ; Doi, Motomichi ; Yamasaki, Kazuhiko ; Hirose, Keiko ; Kitamura, Akira ; Urabe, Takao ; Hattori, Nobutaka ; Kinjo, Masataka ; Ebihara, Tatsuhiko ; Shimura, Hideki</creator><creatorcontrib>Ochiishi, Tomoyo ; Doi, Motomichi ; Yamasaki, Kazuhiko ; Hirose, Keiko ; Kitamura, Akira ; Urabe, Takao ; Hattori, Nobutaka ; Kinjo, Masataka ; Ebihara, Tatsuhiko ; Shimura, Hideki</creatorcontrib><description>The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers
in vivo
is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ
1-42
-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers
in vitro
and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker” and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic
C. elegans
. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals and for drug screening by analyzing Aβ toxicity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep22712</identifier><identifier>PMID: 26982553</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689/1283 ; 692/617/375/364 ; Amyloid beta-Peptides - genetics ; Amyloid beta-Peptides - metabolism ; Animals ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - metabolism ; Apoptosis ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Cells, Cultured ; Cercopithecus aethiops ; COS Cells ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Immunohistochemistry ; Microscopy, Electron ; Microscopy, Fluorescence ; multidisciplinary ; Neurons - cytology ; Neurons - metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Plasmids - genetics ; Plasmids - metabolism ; Protein Multimerization ; Rats ; Rats, Wistar ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - isolation & purification ; Science</subject><ispartof>Scientific reports, 2016-03, Vol.6 (1), p.22712, Article 22712</ispartof><rights>The Author(s) 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243</citedby><cites>FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26982553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochiishi, Tomoyo</creatorcontrib><creatorcontrib>Doi, Motomichi</creatorcontrib><creatorcontrib>Yamasaki, Kazuhiko</creatorcontrib><creatorcontrib>Hirose, Keiko</creatorcontrib><creatorcontrib>Kitamura, Akira</creatorcontrib><creatorcontrib>Urabe, Takao</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Ebihara, Tatsuhiko</creatorcontrib><creatorcontrib>Shimura, Hideki</creatorcontrib><title>Development of new fusion proteins for visualizing amyloid-β oligomers in vivo</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers
in vivo
is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ
1-42
-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers
in vitro
and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker” and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic
C. elegans
. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals and for drug screening by analyzing Aβ toxicity.</description><subject>631/378/1689/1283</subject><subject>692/617/375/364</subject><subject>Amyloid beta-Peptides - genetics</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - metabolism</subject><subject>Apoptosis</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Immunohistochemistry</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Protein Multimerization</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkN1KwzAYQIMobsxd-AKSW4Vq-jVt0xtB5i8Iu9HrkGZpzWiTkqyV-Vg-iM9kxnRMMDcJfCcn4SB0GpPLmCTsyjvVAeQxHKAxEJpGkAAc7p1HaOr9koSVQkHj4hiNICsYpGkyRvNbNajGdq0yK2wrbNQ7rnqvrcGdsyuljceVdXjQvheN_tCmxqJdN1Yvoq9PbBtd21Y5j7UJzGBP0FElGq-mP_sEvd7fvcweo-f5w9Ps5jmSNCariKVFnpA0K0tFFDAJscgyVoEkVDJaplUpQORFSsosU5AXScESluc0kbIEAjSZoOutt-vLVi1k-L4TDe-cboVbcys0_zsx-o3XduA0yLJ8IzjfCqSzPjSsdndjwjdh-S5sYM_2H9uRvxkDcLEFfBiZWjm-tL0zIcA_tm96rYRE</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Ochiishi, Tomoyo</creator><creator>Doi, Motomichi</creator><creator>Yamasaki, Kazuhiko</creator><creator>Hirose, Keiko</creator><creator>Kitamura, Akira</creator><creator>Urabe, Takao</creator><creator>Hattori, Nobutaka</creator><creator>Kinjo, Masataka</creator><creator>Ebihara, Tatsuhiko</creator><creator>Shimura, Hideki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160316</creationdate><title>Development of new fusion proteins for visualizing amyloid-β oligomers in vivo</title><author>Ochiishi, Tomoyo ; Doi, Motomichi ; Yamasaki, Kazuhiko ; Hirose, Keiko ; Kitamura, Akira ; Urabe, Takao ; Hattori, Nobutaka ; Kinjo, Masataka ; Ebihara, Tatsuhiko ; Shimura, Hideki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/378/1689/1283</topic><topic>692/617/375/364</topic><topic>Amyloid beta-Peptides - genetics</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - metabolism</topic><topic>Apoptosis</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Immunohistochemistry</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Protein Multimerization</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochiishi, Tomoyo</creatorcontrib><creatorcontrib>Doi, Motomichi</creatorcontrib><creatorcontrib>Yamasaki, Kazuhiko</creatorcontrib><creatorcontrib>Hirose, Keiko</creatorcontrib><creatorcontrib>Kitamura, Akira</creatorcontrib><creatorcontrib>Urabe, Takao</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Ebihara, Tatsuhiko</creatorcontrib><creatorcontrib>Shimura, Hideki</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochiishi, Tomoyo</au><au>Doi, Motomichi</au><au>Yamasaki, Kazuhiko</au><au>Hirose, Keiko</au><au>Kitamura, Akira</au><au>Urabe, Takao</au><au>Hattori, Nobutaka</au><au>Kinjo, Masataka</au><au>Ebihara, Tatsuhiko</au><au>Shimura, Hideki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of new fusion proteins for visualizing amyloid-β oligomers in vivo</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-03-16</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>22712</spage><pages>22712-</pages><artnum>22712</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers
in vivo
is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ
1-42
-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers
in vitro
and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker” and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic
C. elegans
. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals and for drug screening by analyzing Aβ toxicity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26982553</pmid><doi>10.1038/srep22712</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-03, Vol.6 (1), p.22712, Article 22712 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4793674 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1689/1283 692/617/375/364 Amyloid beta-Peptides - genetics Amyloid beta-Peptides - metabolism Animals Animals, Genetically Modified - genetics Animals, Genetically Modified - metabolism Apoptosis Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Cells, Cultured Cercopithecus aethiops COS Cells Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humanities and Social Sciences Immunohistochemistry Microscopy, Electron Microscopy, Fluorescence multidisciplinary Neurons - cytology Neurons - metabolism Nuclear Magnetic Resonance, Biomolecular Peptide Fragments - genetics Peptide Fragments - metabolism Plasmids - genetics Plasmids - metabolism Protein Multimerization Rats Rats, Wistar Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - isolation & purification Science |
title | Development of new fusion proteins for visualizing amyloid-β oligomers in vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20new%20fusion%20proteins%20for%20visualizing%20amyloid-%CE%B2%20oligomers%20in%20vivo&rft.jtitle=Scientific%20reports&rft.au=Ochiishi,%20Tomoyo&rft.date=2016-03-16&rft.volume=6&rft.issue=1&rft.spage=22712&rft.pages=22712-&rft.artnum=22712&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep22712&rft_dat=%3Cpubmed_cross%3E26982553%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-85973056bbe0e28c21a668f2c04c84b5fba2a7950b66e279398387743ccb20243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26982553&rfr_iscdi=true |