Loading…
ℤ3 parafermionic chain emerging from Yang-Baxter equation
We construct the 1D parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the parafermionic model i...
Saved in:
Published in: | Scientific reports 2016-02, Vol.6 (1), p.21497-21497, Article 21497 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373 |
container_end_page | 21497 |
container_issue | 1 |
container_start_page | 21497 |
container_title | Scientific reports |
container_volume | 6 |
creator | Yu, Li-Wei Ge, Mo-Lin |
description | We construct the 1D
parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the
parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the
parafermionic model is a direct generalization of 1D
Kitaev model. Both the
and
model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian
based on Yang-Baxter equation. Different from the Majorana doubling, the
holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system,
ω
-parity
P
and emergent parafermionic operator Γ, which are the generalizations of parity
P
M
and emergent Majorana operator in Lee-Wilczek model, respectively. Both the
parafermionic model and
can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation. |
doi_str_mv | 10.1038/srep21497 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4794089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906896408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373</originalsourceid><addsrcrecordid>eNplkctKxDAUhoMojugsfAEpuFGhmlvTBkFQ8QYDbnThKqTpaafDNB2TVnTvo_hkPomRGYdRs0ngfHz5Dz9CuwQfE8yyE-9gRgmX6RraopgnMWWUrq-8B2jo_QSHk1DJidxEAyokplLKLXT6-f7Bopl2ugTX1K2tTWTGurYRNOCq2lZR6dometK2ii_0awcugudedwHdQRulnnoYLu5t9Hh99XB5G4_ub-4uz0ex4SzrYpnLQmSaEFEknEFOC2CcQsgOGpKcaGp4gU2aUJMLw6XOIeeZlinPRUlZyrbR2dw76_MGCgO2c3qqZq5utHtTra7V74mtx6pqXxRPJceZDIKDhcC1zz34TjW1NzCdagtt7xVJRSpJIhgJ6P4fdNL2zob1FJFYZFIEY6AO55RxrQ8FlMswBKvvVtSylcDuraZfkj8dBOBoDvgwshW4lS__2b4AnrmXRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906896408</pqid></control><display><type>article</type><title>ℤ3 parafermionic chain emerging from Yang-Baxter equation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yu, Li-Wei ; Ge, Mo-Lin</creator><creatorcontrib>Yu, Li-Wei ; Ge, Mo-Lin</creatorcontrib><description>We construct the 1D
parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the
parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the
parafermionic model is a direct generalization of 1D
Kitaev model. Both the
and
model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian
based on Yang-Baxter equation. Different from the Majorana doubling, the
holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system,
ω
-parity
P
and emergent parafermionic operator Γ, which are the generalizations of parity
P
M
and emergent Majorana operator in Lee-Wilczek model, respectively. Both the
parafermionic model and
can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21497</identifier><identifier>PMID: 26902999</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 639/766/483/640 ; Algebra ; Color ; Humanities and Social Sciences ; multidisciplinary ; Phase transitions ; Science ; Science (multidisciplinary) ; Symmetry</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21497-21497, Article 21497</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373</citedby><cites>FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1906896408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1906896408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26902999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Li-Wei</creatorcontrib><creatorcontrib>Ge, Mo-Lin</creatorcontrib><title>ℤ3 parafermionic chain emerging from Yang-Baxter equation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We construct the 1D
parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the
parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the
parafermionic model is a direct generalization of 1D
Kitaev model. Both the
and
model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian
based on Yang-Baxter equation. Different from the Majorana doubling, the
holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system,
ω
-parity
P
and emergent parafermionic operator Γ, which are the generalizations of parity
P
M
and emergent Majorana operator in Lee-Wilczek model, respectively. Both the
parafermionic model and
can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.</description><subject>639/705</subject><subject>639/766/483/640</subject><subject>Algebra</subject><subject>Color</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkctKxDAUhoMojugsfAEpuFGhmlvTBkFQ8QYDbnThKqTpaafDNB2TVnTvo_hkPomRGYdRs0ngfHz5Dz9CuwQfE8yyE-9gRgmX6RraopgnMWWUrq-8B2jo_QSHk1DJidxEAyokplLKLXT6-f7Bopl2ugTX1K2tTWTGurYRNOCq2lZR6dometK2ii_0awcugudedwHdQRulnnoYLu5t9Hh99XB5G4_ub-4uz0ex4SzrYpnLQmSaEFEknEFOC2CcQsgOGpKcaGp4gU2aUJMLw6XOIeeZlinPRUlZyrbR2dw76_MGCgO2c3qqZq5utHtTra7V74mtx6pqXxRPJceZDIKDhcC1zz34TjW1NzCdagtt7xVJRSpJIhgJ6P4fdNL2zob1FJFYZFIEY6AO55RxrQ8FlMswBKvvVtSylcDuraZfkj8dBOBoDvgwshW4lS__2b4AnrmXRw</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Yu, Li-Wei</creator><creator>Ge, Mo-Lin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160223</creationdate><title>ℤ3 parafermionic chain emerging from Yang-Baxter equation</title><author>Yu, Li-Wei ; Ge, Mo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/705</topic><topic>639/766/483/640</topic><topic>Algebra</topic><topic>Color</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Li-Wei</creatorcontrib><creatorcontrib>Ge, Mo-Lin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Li-Wei</au><au>Ge, Mo-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ℤ3 parafermionic chain emerging from Yang-Baxter equation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21497</spage><epage>21497</epage><pages>21497-21497</pages><artnum>21497</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We construct the 1D
parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the
parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the
parafermionic model is a direct generalization of 1D
Kitaev model. Both the
and
model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian
based on Yang-Baxter equation. Different from the Majorana doubling, the
holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system,
ω
-parity
P
and emergent parafermionic operator Γ, which are the generalizations of parity
P
M
and emergent Majorana operator in Lee-Wilczek model, respectively. Both the
parafermionic model and
can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26902999</pmid><doi>10.1038/srep21497</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.21497-21497, Article 21497 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4794089 |
source | Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705 639/766/483/640 Algebra Color Humanities and Social Sciences multidisciplinary Phase transitions Science Science (multidisciplinary) Symmetry |
title | ℤ3 parafermionic chain emerging from Yang-Baxter equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%84%A43%20parafermionic%20chain%20emerging%20from%20Yang-Baxter%20equation&rft.jtitle=Scientific%20reports&rft.au=Yu,%20Li-Wei&rft.date=2016-02-23&rft.volume=6&rft.issue=1&rft.spage=21497&rft.epage=21497&rft.pages=21497-21497&rft.artnum=21497&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21497&rft_dat=%3Cproquest_pubme%3E1906896408%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-9b9d68a116d543eb2de342e038eae5b1a2c4d0c752cb6c49abeb48a974b6f2373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906896408&rft_id=info:pmid/26902999&rfr_iscdi=true |